Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 18(1)2018 Jan 09.
Article in English | MEDLINE | ID: mdl-29315279

ABSTRACT

Breast cancer treatments can have a negative impact on breast aesthetics, in case when surgery is intended to intersect tumor. For many years mastectomy was the only surgical option, but more recently breast conserving surgery (BCS) has been promoted as a liable alternative to treat cancer while preserving most part of the breast. However, there is still a significant number of BCS intervened patients who are unpleasant with the result of the treatment, which leads to self-image issues and emotional overloads. Surgeons recognize the value of a tool to predict the breast shape after BCS to facilitate surgeon/patient communication and allow more educated decisions; however, no such tool is available that is suited for clinical usage. These tools could serve as a way of visually sensing the aesthetic consequences of the treatment. In this research, it is intended to propose a methodology for predict the deformation after BCS by using machine learning techniques. Nonetheless, there is no appropriate dataset containing breast data before and after surgery in order to train a learning model. Therefore, an in-house semi-synthetic dataset is proposed to fulfill the requirement of this research. Using the proposed dataset, several learning methodologies were investigated, and promising outcomes are obtained.


Subject(s)
Mastectomy, Segmental , Breast , Breast Neoplasms , Humans , Mastectomy
2.
Crit Rev Biomed Eng ; 46(6): 523-580, 2018.
Article in English | MEDLINE | ID: mdl-30806213

ABSTRACT

Breast cancer is one of the most common malignancies affecting women worldwide. However, despite its incidence trends have increased, the mortality rate has significantly decreased. The primary concern in any cancer treatment is the oncological outcome but, in the case of breast cancer, the surgery aesthetic result has become an important quality indicator for breast cancer patients. In this sense, an adequate surgical planning and prediction tool would empower the patient regarding the treatment decision process, enabling a better communication between the surgeon and the patient and a better understanding of the impact of each surgical option. To develop such tool, it is necessary to create complete 3D model of the breast, integrating both inner and outer breast data. In this review, we thoroughly explore and review the major existing works that address, directly or not, the technical challenges involved in the development of a 3D software planning tool in the field of breast conserving surgery.


Subject(s)
Breast Neoplasms/diagnosis , Breast Neoplasms/surgery , Breast/diagnostic imaging , Imaging, Three-Dimensional/methods , Mastectomy, Segmental/methods , Breast/pathology , Female , Humans , Patient Care Planning , Preoperative Period , Software
3.
Nanomaterials (Basel) ; 8(1)2017 Dec 22.
Article in English | MEDLINE | ID: mdl-29271875

ABSTRACT

Nanoparticle self-assembly is a complex phenomenon, the control of which is complicated by the lack of appropriate tools and techniques for monitoring the phenomenon with adequate resolution in real-time. In this work, a label-free technique based on dark-field microscopy was developed to investigate the self-assembly of nanoparticles. A bio-nanoparticle with complex shape (T4 bacteriophage) that self-assembles on glass substrates upon drying was developed. The fluid flow regime during the drying process, as well as the final self-assembled structures, were studied using dark-field microscopy, while phage diffusion was analysed by tracking of the phage nanoparticles in the bulk solutions. The concentrations of T4 phage nanoparticles and salt ions were identified as the main parameters influencing the fluid flow, particle motion and, consequently, the resulting self-assembled structure. This work demonstrates the utility of enhanced dark-field microscopy as a label-free technique for the observation of drying-induced self-assembly of bacteriophage T4. This technique provides the ability to track the nano-sized particles in different matrices and serves as a strong tool for monitoring self-assembled structures and bottom-up assembly of nano-sized building blocks in real-time.

4.
J Med Signals Sens ; 4(1): 1-9, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24696803

ABSTRACT

In this paper, a novel matched filter based on a new kernel function with Cauchy distribution is introduced to improve the accuracy of the automatic retinal vessel detection compared with other available matched filter-based methods, most notably, the methods built on Gaussian distribution function. Several experiments are conducted to pick the best values of the parameters for the new designed filter, including both Cauchy function parameters as well as the matched filter parameters such as the threshold value. Moreover, the thresholding phase is enhanced with a two-step procedure. Experimental results employed on DRIVE retinal images database confirms that the proposed method has higher accuracy compared with other available matched filter-based methods.

SELECTION OF CITATIONS
SEARCH DETAIL