Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Front Genet ; 15: 1401100, 2024.
Article in English | MEDLINE | ID: mdl-38859942

ABSTRACT

The TERT gene encodes the reverse transcriptase subunit of telomerase and is normally transcriptionally suppressed in differentiated human cells but reactivated in cancers where its expression is frequently associated with poor survival prognosis. Here we experimentally assessed the RNA sequencing expression patterns associated with TERT transcription in 1039 human cancer samples of 27 tumor types. We observed a bimodal distribution of TERT expression where ∼27% of cancer samples did not express TERT and the rest showed a bell-shaped distribution. Expression of TERT strongly correlated with 1443 human genes including 103 encoding transcriptional factor proteins. Comparison of TERT- positive and negative cancers showed the differential activation of 496 genes and 1975 molecular pathways. Therein, 32/38 (84%) of DNA repair pathways were hyperactivated in TERT+ cancers which was also connected with accelerated replication, transcription, translation, and cell cycle progression. In contrast, the level of 40 positive cell cycle regulator proteins and a set of epithelial-to-mesenchymal transition pathways was specific for the TERT- group suggesting different proliferation strategies for both groups of cancer. Our pilot study showed that the TERT+ group had ∼13% of cancers with C228T or C250T mutated TERT promoter. However, the presence of promoter mutations was not associated with greater TERT expression compared with other TERT+ cancers, suggesting parallel mechanisms of its transcriptional activation in cancers. In addition, we detected a decreased expression of L1 retrotransposons in the TERT+ group, and further decreased L1 expression in promoter mutated TERT+ cancers. TERT expression was correlated with 17 genes encoding molecular targets of cancer therapeutics and may relate to differential survival patterns of TERT- positive and negative cancers.

2.
Front Oncol ; 14: 1415801, 2024.
Article in English | MEDLINE | ID: mdl-38919532

ABSTRACT

Cancer chimeric, or fusion, transcripts are thought to most frequently appear due to chromosomal aberrations that combine moieties of unrelated normal genes. When being expressed, this results in chimeric RNAs having upstream and downstream parts relatively to the breakpoint position for the 5'- and 3'-fusion components, respectively. As many other types of cancer mutations, fusion genes can be of either driver or passenger type. The driver fusions may have pivotal roles in malignisation by regulating survival, growth, and proliferation of tumor cells, whereas the passenger fusions most likely have no specific function in cancer. The majority of research on fusion gene formation events is concentrated on identifying fusion proteins through chimeric transcripts. However, contemporary studies evidence that fusion events involving non-coding RNA (ncRNA) genes may also have strong oncogenic potential. In this review we highlight most frequent classes of ncRNAs fusions and summarize current understanding of their functional roles. In many cases, cancer ncRNA fusion can result in altered concentration of the non-coding RNA itself, or it can promote protein expression from the protein-coding fusion moiety. Differential splicing, in turn, can enrich the repertoire of cancer chimeric transcripts, e.g. as observed for the fusions of circular RNAs and long non-coding RNAs. These and other ncRNA fusions are being increasingly recognized as cancer biomarkers and even potential therapeutic targets. Finally, we discuss the use of ncRNA fusion genes in the context of cancer detection and therapy.

3.
Comput Struct Biotechnol J ; 21: 3964-3986, 2023.
Article in English | MEDLINE | ID: mdl-37635765

ABSTRACT

Normal tissues are essential for studying disease-specific differential gene expression. However, healthy human controls are typically available only in postmortal/autopsy settings. In cancer research, fragments of pathologically normal tissue adjacent to tumor site are frequently used as the controls. However, it is largely underexplored how cancers can systematically influence gene expression of the neighboring tissues. Here we performed a comprehensive pan-cancer comparison of molecular profiles of solid tumor-adjacent and autopsy-derived "healthy" normal tissues. We found a number of systemic molecular differences related to activation of the immune cells, intracellular transport and autophagy, cellular respiration, telomerase activation, p38 signaling, cytoskeleton remodeling, and reorganization of the extracellular matrix. The tumor-adjacent tissues were deficient in apoptotic signaling and negative regulation of cell growth including G2/M cell cycle transition checkpoint. We also detected an extensive rearrangement of the chemical perception network. Molecular targets of 32 and 37 cancer drugs were over- or underexpressed, respectively, in the tumor-adjacent norms. These processes may be driven by molecular events that are correlated between the paired cancer and adjacent normal tissues, that mostly relate to inflammation and regulation of intracellular molecular pathways such as the p38, MAPK, Notch, and IGF1 signaling. However, using a model of macaque postmortal tissues we showed that for the 30 min - 24-hour time frame at 4ºC, an RNA degradation pattern in lung biosamples resulted in an artifact "differential" expression profile for 1140 genes, although no differences could be detected in liver. Thus, such concerns should be addressed in practice.

4.
Cells ; 12(9)2023 05 02.
Article in English | MEDLINE | ID: mdl-37174700

ABSTRACT

The evolution of protein-coding genes has both structural and regulatory components. The first can be assessed by measuring the ratio of non-synonymous to synonymous nucleotide substitutions. The second component can be measured as the normalized proportion of transposable elements that are used as regulatory elements. For the first time, we characterized in parallel the regulatory and structural evolutionary profiles for 10,890 human genes and 2972 molecular pathways. We observed a ~0.1 correlation between the structural and regulatory metrics at the gene level, which appeared much higher (~0.4) at the pathway level. We deposited the data in the publicly available database RetroSpect. We also analyzed the evolutionary dynamics of six cancer pathways of two major axes: Notch/WNT/Hedgehog and AKT/mTOR/EGFR. The Hedgehog pathway had both components slower, whereas the Akt pathway had clearly accelerated structural evolution. In particular, the major hub nodes Akt and beta-catenin showed both components strongly decreased, whereas two major regulators of Akt TCL1 and CTMP had outstandingly high evolutionary rates. We also noticed structural conservation of serine/threonine kinases and the genes related to guanosine metabolism in cancer signaling: GPCRs, G proteins, and small regulatory GTPases (Src, Rac, Ras); however, this was compensated by the accelerated regulatory evolution.


Subject(s)
Neoplasms , Proto-Oncogene Proteins c-akt , Humans , Proto-Oncogene Proteins c-akt/metabolism , Hedgehog Proteins/metabolism , Signal Transduction/genetics , Protein Serine-Threonine Kinases/metabolism , Neoplasms/genetics
5.
DNA Repair (Amst) ; 123: 103448, 2023 03.
Article in English | MEDLINE | ID: mdl-36657260

ABSTRACT

DNA repair mechanisms keep genome integrity and limit tumor-associated alterations and heterogeneity, but on the other hand they promote tumor survival after radiation and genotoxic chemotherapies. We screened pathway activation levels of 38 DNA repair pathways in nine human cancer types (gliomas, breast, colorectal, lung, thyroid, cervical, kidney, gastric, and pancreatic cancers). We took RNAseq profiles of the experimental 51 normal and 408 tumor samples, and from The Cancer Genome Atlas and Clinical Proteomic Tumor Analysis Consortium databases - of 500/407 normal and 5752/646 tumor samples, and also 573 normal and 984 tumor proteomic profiles from Proteomic Data Commons portal. For all the samplings we observed a congruent trend that all cancer types showed inhibition of G2/M arrest checkpoint pathway compared to the normal samples, and relatively low activities of p53-mediated pathways. In contrast, other DNA repair pathways were upregulated in most of the cancer types. The G2/M checkpoint pathway was statistically significantly downregulated compared to the other DNA repair pathways, and this inhibition was strongly impacted by antagonistic regulation of (i) promitotic genes CCNB and CDK1, and (ii) GADD45 genes promoting G2/M arrest. At the DNA level, we found that ATM, TP53, and CDKN1A genes accumulated loss of function mutations, and cyclin B complex genes - transforming mutations. These findings suggest importance of activation for most of DNA repair pathways in cancer progression, with remarkable exceptions of G2/M checkpoint and p53-related pathways which are downregulated and neutrally activated, respectively.


Subject(s)
Neoplasms , Tumor Suppressor Protein p53 , Humans , Apoptosis , Ataxia Telangiectasia Mutated Proteins/metabolism , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Checkpoint Kinase 1/metabolism , DNA Damage , DNA Repair , G2 Phase Cell Cycle Checkpoints/genetics , Neoplasms/genetics , Proteomics , Tumor Suppressor Protein p53/metabolism
6.
Int J Mol Sci ; 23(13)2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35806337

ABSTRACT

In gliomas, expression of certain marker genes is strongly associated with survival and tumor type and often exceeds histological assessments. Using a human interactome model, we algorithmically reconstructed 7494 new-type molecular pathways that are centered each on an individual protein. Each single-gene expression and gene-centric pathway activation was tested as a survival and tumor grade biomarker in gliomas and their diagnostic subgroups (IDH mutant or wild type, IDH mutant with 1p/19q co-deletion, MGMT promoter methylated or unmethylated), including the three major molecular subtypes of glioblastoma (proneural, mesenchymal, classical). We used three datasets from The Cancer Genome Atlas and the Chinese Glioma Genome Atlas, which in total include 527 glioblastoma and 1097 low grade glioma profiles. We identified 2724 such gene and 2418 pathway survival biomarkers out of total 17,717 genes and 7494 pathways analyzed. We then assessed tumor grade and molecular subtype biomarkers and with the threshold of AUC > 0.7 identified 1322/982 gene biomarkers and 472/537 pathway biomarkers. This suggests roughly two times greater efficacy of the reconstructed pathway approach compared to gene biomarkers. Thus, we conclude that activation levels of algorithmically reconstructed gene-centric pathways are a potent class of new-generation diagnostic and prognostic biomarkers for gliomas.


Subject(s)
Brain Neoplasms , Glioblastoma , Glioma , Biomarkers, Tumor/genetics , Brain Neoplasms/diagnosis , Brain Neoplasms/genetics , Glioma/diagnosis , Glioma/genetics , Humans , Isocitrate Dehydrogenase/genetics , Mutation
7.
Comput Struct Biotechnol J ; 20: 2280-2291, 2022.
Article in English | MEDLINE | ID: mdl-35615022

ABSTRACT

OncoboxPD (Oncobox pathway databank) available at https://open.oncobox.com is the collection of 51 672 uniformly processed human molecular pathways. Superposition of all pathways formed interactome graph of protein-protein interactions and metabolic reactions containing 361 654 interactions and 64 095 molecular participants. Pathways are uniformly classified by biological processes, and each pathway node is algorithmically functionally annotated by specific activator/repressor role. This enables online calculation of statistically supported pathway activation levels (PALs) with the built-in bioinformatic tool using custom RNA/protein expression profiles. Each pathway can be visualized as static or dynamic graph, where vertices are molecules participating in a pathway and edges are interactions or reactions between them. Differentially expressed nodes in a pathway can be visualized in two-color mode with user-defined color scale. For every comparison, OncoboxPD also generates a graph summarizing top up- and downregulated pathways.

8.
Int J Mol Sci ; 21(5)2020 Feb 26.
Article in English | MEDLINE | ID: mdl-32111026

ABSTRACT

Inter-patient molecular heterogeneity is the major declared driver of an expanding variety of anticancer drugs and personalizing their prescriptions. Here, we compared interpatient molecular heterogeneities of tumors and repertoires of drugs or their molecular targets currently in use in clinical oncology. We estimated molecular heterogeneity using genomic (whole exome sequencing) and transcriptomic (RNA sequencing) data for 4890 tumors taken from The Cancer Genome Atlas database. For thirteen major cancer types, we compared heterogeneities at the levels of mutations and gene expression with the repertoires of targeted therapeutics and their molecular targets accepted by the current guidelines in oncology. Totally, 85 drugs were investigated, collectively covering 82 individual molecular targets. For the first time, we showed that the repertoires of molecular targets of accepted drugs did not correlate with molecular heterogeneities of different cancer types. On the other hand, we found that the clinical recommendations for the available cancer drugs were strongly congruent with the gene expression but not gene mutation patterns. We detected the best match among the drugs usage recommendations and molecular patterns for the kidney, stomach, bladder, ovarian and endometrial cancers. In contrast, brain tumors, prostate and colorectal cancers showed the lowest match. These findings provide a theoretical basis for reconsidering usage of targeted therapeutics and intensifying drug repurposing efforts.


Subject(s)
Drug Delivery Systems , Genetic Heterogeneity , Medical Oncology/methods , Molecular Targeted Therapy/methods , Neoplasms/drug therapy , Neoplasms/genetics , Antineoplastic Agents/therapeutic use , Cluster Analysis , Drug Therapy , Genomics , Humans , Mutation , Pathology, Molecular , Precision Medicine/methods , Transcriptome , Exome Sequencing
9.
Cancers (Basel) ; 12(2)2020 Jan 22.
Article in English | MEDLINE | ID: mdl-31979117

ABSTRACT

Carcinogenesis is linked with massive changes in regulation of gene networks. We used high throughput mutation and gene expression data to interrogate involvement of 278 signaling, 72 metabolic, 48 DNA repair and 47 cytoskeleton molecular pathways in cancer. Totally, we analyzed 4910 primary tumor samples with individual cancer RNA sequencing and whole exome sequencing profiles including ~1.3 million DNA mutations and representing thirteen cancer types. Gene expression in cancers was compared with the corresponding 655 normal tissue profiles. For the first time, we calculated mutation enrichment values and activation levels for these pathways. We found that pathway activation profiles were largely congruent among the different cancer types. However, we observed no correlation between mutation enrichment and expression changes both at the gene and at the pathway levels. Overall, positive median cancer-specific activation levels were seen in the DNA repair, versus similar slightly negative values in the other types of pathways. The DNA repair pathways also demonstrated the highest values of mutation enrichment. However, the signaling and cytoskeleton pathways had the biggest proportions of representatives among the outstandingly frequently mutated genes thus suggesting their initiator roles in carcinogenesis and the auxiliary/supporting roles for the other groups of molecular pathways.

10.
Front Pharmacol ; 10: 1, 2019.
Article in English | MEDLINE | ID: mdl-30728774

ABSTRACT

Despite the significant achievements in chemotherapy, cancer remains one of the leading causes of death. Target therapy revolutionized this field, but efficiencies of target drugs show dramatic variation among individual patients. Personalization of target therapies remains, therefore, a challenge in oncology. Here, we proposed molecular pathway-based algorithm for scoring of target drugs using high throughput mutation data to personalize their clinical efficacies. This algorithm was validated on 3,800 exome mutation profiles from The Cancer Genome Atlas (TCGA) project for 128 target drugs. The output values termed Mutational Drug Scores (MDS) showed positive correlation with the published drug efficiencies in clinical trials. We also used MDS approach to simulate all known protein coding genes as the putative drug targets. The model used was built on the basis of 18,273 mutation profiles from COSMIC database for eight cancer types. We found that the MDS algorithm-predicted hits frequently coincide with those already used as targets of the existing cancer drugs, but several novel candidates can be considered promising for further developments. Our results evidence that the MDS is applicable to ranking of anticancer drugs and can be applied for the identification of novel molecular targets.

11.
Front Oncol ; 8: 658, 2018.
Article in English | MEDLINE | ID: mdl-30662873

ABSTRACT

DNA mutations play a crucial role in cancer development and progression. Mutation profiles vary dramatically in different cancer types and between individual tumors. Mutations of several individual genes are known as reliable cancer biomarkers, although the number of such genes is tiny and does not enable differential diagnostics for most of the cancers. We report here a technique enabling dramatically increased efficiency of cancer biomarkers development using DNA mutations data. It includes a quantitative metric termed Pathway instability (PI) based on mutations enrichment of intracellular molecular pathways. This method was tested on 5,956 tumor mutation profiles of 15 cancer types from The Cancer Genome Atlas (TCGA) project. Totally, we screened 2,316,670 mutations in 19,872 genes and 1,748 molecular pathways. Our results demonstrated considerable advantage of pathway-based mutation biomarkers over individual gene mutation profiles, as reflected by more than two orders of magnitude greater numbers by high-quality [ROC area-under-curve (AUC)>0.75] biomarkers. For example, the number of such high-quality mutational biomarkers distinguishing between different cancer types was only six for the individual gene mutations, and already 660 for the pathway-based biomarkers. These results evidence that PI value can be used as a new generation of complex cancer biomarkers significantly outperforming the existing gene mutation biomarkers.

SELECTION OF CITATIONS
SEARCH DETAIL