Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Struct Biotechnol J ; 21: 3280-3292, 2023.
Article in English | MEDLINE | ID: mdl-38213903

ABSTRACT

Organic amendment, and especially the use of composts, is a well-accepted sustainable agricultural practice. Compost increases soil carbon and microbial biomass, changes enzymatic activity, and enriches soil carbon and nitrogen stocks. However, relatively little is known about the immediate and long-term temporal dynamics of agricultural soil microbial communities following repeated compost applications. Our study was conducted at two field sites: Newe Ya'ar (NY, Mediterranean climate) and Gilat (G, semi-arid climate), both managed organically over 4 years under either conventional fertilization (0, zero compost) or three levels of compost amendment (20, 40 and 60 m3/ha or 2, 4, 6 L/m2). Microbial community dynamics in the soils was examined by high- and low-time-resolution analyses. Annual community composition in compost-amended soils was significantly affected by compost amendment levels in G (first, second and third years) and in NY (third year). Repeated sampling at high resolution (9-10 times over 1 year) showed that at both sites, compost application initially induced a strong shift in microbial communities, lasting for up to 1 month, followed by a milder response. Compost application significantly elevated alpha diversity at both sites, but differed in the compost-dose correlation effect. We demonstrate higher abundance of taxa putatively involved in organic decomposition and characterized compost-related indicator taxa and a compost-derived core microbiome at both sites. Overall, this study describes temporal changes in the ecology of soil microbiomes in response to compost vs. conventional fertilization.

2.
Front Fungal Biol ; 2: 672696, 2021.
Article in English | MEDLINE | ID: mdl-37744127

ABSTRACT

The Neurospora crassa GUL-1 is part of the COT-1 pathway, which plays key roles in regulating polar hyphal growth and cell wall remodeling. We show that GUL-1 is a bona fide RNA-binding protein (RBP) that can associate with 828 "core" mRNA species. When cell wall integrity (CWI) is challenged, expression of over 25% of genomic RNA species are modulated (2,628 mRNAs, including the GUL-1 mRNA). GUL-1 binds mRNAs of genes related to translation, cell wall remodeling, circadian clock, endoplasmic reticulum (ER), as well as CWI and MAPK pathway components. GUL-1 interacts with over 100 different proteins, including stress-granule and P-body proteins, ER components and components of the MAPK, COT-1, and STRIPAK complexes. Several additional RBPs were also shown to physically interact with GUL-1. Under stress conditions, GUL-1 can localize to the ER and affect the CWI pathway-evident via altered phosphorylation levels of MAK-1, interaction with mak-1 transcript, and involvement in the expression level of the transcription factor adv-1. We conclude that GUL-1 functions in multiple cellular processes, including the regulation of cell wall remodeling, via a mechanism associated with the MAK-1 pathway and stress-response.

3.
Microorganisms ; 8(12)2020 Dec 13.
Article in English | MEDLINE | ID: mdl-33322131

ABSTRACT

Excessive use of antimicrobials in aquaculture is concerning, given possible environmental ramifications and the potential contribution to the spread of antimicrobial resistance (AR). In this study, we explored seasonal abundance of antimicrobial resistance genes and bacterial community composition in the water column of an intensive aquaculture pond stocked with Silver Carp (Hypophthalmichthys molitrix) prophylactically treated with sulfamethoprim (25% sulfadiazine; 5% trimethoprim), relative to an adjacent unstocked reservoir. Bacterial community composition was monitored using high-throughput sequencing of 16S rRNA gene amplicons in eight sampling profiles to determine seasonal dynamics, representing principal stages in the fish fattening cycle. In tandem, qPCR was applied to assess relative abundance of selected antimicrobial resistance genes (sul1, sul2, dfrA1, tetA and blaTEM) and class-1 integrons (int1). Concomitantly, resistomes were extrapolated from shotgun metagenomes in representative profiles. Analyses revealed increased relative abundance of sulfonamide and tetracycline resistance genes in fishpond-03, relative to pre-stocking and reservoir levels, whereas no significant differences were observed for genes encoding resistance to antimicrobials that were not used in the fishpond-03. Seasons strongly dictated bacterial community composition, with high abundance of cyanobacteria in summer and increased relative abundance of Flavobacterium in the winter. Our results indicate that prophylactic use of sulfonamides in intensive aquaculture ponds facilitates resistance suggesting that prophylactic use of these antimicrobials in aquaculture should be restricted.

4.
Microbiome ; 8(1): 101, 2020 Jun 30.
Article in English | MEDLINE | ID: mdl-32605634

ABSTRACT

An amendment to this paper has been published and can be accessed via the original article.

5.
Microbiome ; 8(1): 71, 2020 05 21.
Article in English | MEDLINE | ID: mdl-32438915

ABSTRACT

BACKGROUND: Microbial communities are highly responsive to environmental cues, and both their structure and activity can be altered in response to changing conditions. We hypothesized that host-associated microbial communities, particularly those colonizing host surfaces, can serve as in situ sensors to reveal environmental conditions experienced by both microorganisms and the host. For a proof-of-concept, we studied a model plant-soil system and employed a non-deterministic gene-centric approach. A holistic analysis was performed using plants of two species and irrigation with water of low quality to induce host stress. Our analyses examined the genetic potential (DNA) and gene expression patterns (RNA) of plant-associated microbial communities, as well as transcriptional profiling of host plants. RESULTS: Transcriptional analysis of plants irrigated with treated wastewater revealed significant enrichment of general stress-associated root transcripts relative to plants irrigated with fresh water. Metagenomic analysis of root-associated microbial communities in treated wastewater-irrigated plants, however, revealed enrichment of more specific stress-associated genes relating to high levels of salt, high pH and lower levels of oxygen. Meta-analysis of these differentially abundant genes obtained from other metagenome studies, provided evidence of the link between environmental factors such as pH and oxygen and these genes. Analysis of microbial transcriptional response demonstrated that enriched gene content was actively expressed, which implies contemporary response to elevated levels of pH and salt. CONCLUSIONS: We demonstrate here that microbial profiling can elucidate stress signals that cannot be observed even through interrogation of host transcriptome, leading to an alternate mechanism for evaluating in situ conditions experienced by host organisms. This study is a proof-of-concept for the use of microbial communities as microsensors, with great potential for interrogation of a wide range of host systems. Video Abstract.


Subject(s)
Biosensing Techniques , Host Microbial Interactions , Microbiota , Plant Roots , Stress, Physiological , Metagenomics , Microbiota/genetics , Plant Roots/microbiology , Soil Microbiology
6.
Sci Total Environ ; 705: 135791, 2020 Feb 25.
Article in English | MEDLINE | ID: mdl-31810706

ABSTRACT

No-tillage (NT) is a common soil-conservation management practice with known agricultural advantages and drawbacks. However, its short- and long-term effects on the soil microbiome have not been well established. Here, we compared conventional (CT), minimal (MT) and NT practices in two agricultural fields in the north of Israel over a period of 3 years. Edaphic properties, plant-associated pests, weed species abundance and soil microbial community structure were assessed to examine the effects of tillage. Tillage significantly altered physical and chemical soil properties, and a significant increase in hydrolytic and redox microbial activities was observed in NT soils from both sites. Consistent with this, the microbial community structure of NT samples diverged significantly over time from those of CT samples. Repetitive tillage and even a single tillage event caused significant changes in the relative abundance of microorganisms at taxonomic levels ranging from phylum to OTU. However, no significant difference between treatments was found in microbial community alpha-diversity or crop yield. Conversely, higher levels of weed diversity and some pests number were found in NT samples. Overall, we demonstrate that tillage plays a major role in shaping microbial community structure, and in influencing additional environmental, ecological and agricultural soil parameters.


Subject(s)
Microbiota , Soil Microbiology , Soil , Agriculture , Israel
7.
Water Res ; 164: 114906, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31377529

ABSTRACT

Reuse of municipal wastewater is a growing global trend, but currently there is lack of consensus regarding the potential dissemination of antibiotic resistance elements by treated wastewater irrigation. We tracked intI1, a proxy for anthropogenic pollution, and an assemblage of antibiotic resistance genes associated with mobile elements and/or wastewater (blaGES, blaOXA2, blaOXA10, blaTEM, blaCTX-M-32 and qnrS) in treated wastewater effluents, effluent stabilization reservoirs, and along irrigation water-soil-crop continua in experimental lysimeters and large-scale commercial fields. While several of the targeted antibiotic resistance genes were profuse in effluents, there was almost no correlation between gene abundance in irrigation water and those detected in soil, and no evidence of systematic gene transfer to irrigated soil or crops. In contrast, soil intI1 abundance correlated strongly to irrigation water levels in lysimeters and sandy field soils, but this was not the case for clay-rich soils or for most of the analyzed crops, suggesting that intI1 may not always be a reliable marker for tracking the impact of treated wastewater irrigation. We hypothesize that "ecological boundaries" expedited by biotic and abiotic factors constrain dissemination of antibiotic resistance elements, and assert that a more holistic perception of these factors is crucial for understanding and managing antibiotic resistance dissemination.


Subject(s)
Integrons , Wastewater , Agricultural Irrigation , Drug Resistance, Microbial , Genes, Bacterial , Soil , Waste Disposal, Fluid
8.
Sci Total Environ ; 655: 899-907, 2019 Mar 10.
Article in English | MEDLINE | ID: mdl-30481716

ABSTRACT

With increasing fresh water (FW) scarcity, the use of treated wastewater (TWW) for crop irrigation is expanding globally. Besides clear benefits, some undesired long-term effects of irrigation with this low quality water on plant performance have been reported. As the rhizosphere microbiome can mediate plant-soil interactions, an examination of the response of these organisms to TWW is necessary to understand the full effects of water quality. In the current study, the effects of irrigation water quality on the microbial community structure of soil and roots as well as edaphic properties and plant performance were evaluated. We compared soil and roots microbiomes of two different plant species (tomato and lettuce), each grown in two distinct soils, and irrigated with either FW or TWW. Irrigation with TWW significantly increase soil pH, EC, K, Na and DOC, and decrease plant fruit and shoot weight, relatively to samples irrigated with FW. We calculated the effect size of plant species, soil type, and irrigation water quality on microbial community structure in soil and root. In the roots, plant species and irrigation water were the dominant factors in shaping both total (DNA based) and active (RNA based) microbial communities, with both factors contributing similarly to the observed microbial population. Soil type and irrigation water were the dominant factors shaping the total microbial community in the soil and were of similar magnitude. Irrigation water quality is demonstrated to be a major force in shaping root-associated microbiome, leading to altered microbial community structure in the critical juncture between plant and soil.


Subject(s)
Agricultural Irrigation , Lactuca/microbiology , Microbiota/physiology , Plant Roots/microbiology , Soil Microbiology , Solanum lycopersicum/microbiology , Wastewater/analysis , Agricultural Irrigation/methods , Genotype , Israel , Lactuca/genetics , Lactuca/metabolism , Solanum lycopersicum/genetics , Solanum lycopersicum/metabolism , Plant Roots/metabolism , Soil/chemistry , Waste Disposal, Fluid , Water Quality
SELECTION OF CITATIONS
SEARCH DETAIL
...