Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 2202, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38485927

ABSTRACT

Viral fusion proteins facilitate cellular infection by fusing viral and cellular membranes, which involves dramatic transitions from their pre- to postfusion conformations. These proteins are among the most protective viral immunogens, but they are metastable which often makes them intractable as subunit vaccine targets. Adapting a natural enzymatic reaction, we harness the structural rigidity that targeted dityrosine crosslinks impart to covalently stabilize fusion proteins in their native conformations. We show that the prefusion conformation of respiratory syncytial virus fusion protein can be stabilized with two engineered dityrosine crosslinks (DT-preF), markedly improving its stability and shelf-life. Furthermore, it has 11X greater potency as compared with the DS-Cav1 stabilized prefusion F protein in immunogenicity studies and overcomes immunosenescence in mice with simply a high-dose formulation on alum.


Subject(s)
Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus Vaccines , Respiratory Syncytial Virus, Human , Tyrosine/analogs & derivatives , Animals , Mice , Antibodies, Neutralizing , Antibodies, Viral , Tyrosine/metabolism , Viral Fusion Proteins , Respiratory Syncytial Virus Infections/prevention & control
2.
Front Immunol ; 11: 1673, 2020.
Article in English | MEDLINE | ID: mdl-32849580

ABSTRACT

Respiratory syncytial virus (RSV) remains the most common cause of lower respiratory tract infections in children worldwide. Development of a vaccine has been hindered by the risk of developing enhanced respiratory disease (ERD) upon natural exposure to the virus. Generation of higher quality neutralizing antibodies with stabilized pre-fusion F protein antigens has been proposed as a strategy to prevent ERD. We sought to test whether there was evidence of ERD in naïve BALB/c mice immunized with an unadjuvanted, stabilized pre-fusion F protein, and challenged with RSV line 19. We further sought to determine the extent to which formulation with a Th2-biased (alum) or a more Th1/Th2-balanced (Advax-SM) adjuvant influenced cellular responses and lung pathology. When exposed to RSV, mice immunized with pre-fusion F protein alone (PreF) exhibited increased airway eosinophilia and mucus accumulation. This was further exacerbated by formulation of PreF with Alum (aluminum hydroxide). Conversely, formulation of PreF with a Th1/Th2-balanced adjuvant, Advax-SM, not only suppressed RSV viral replication, but also inhibited airway eosinophilia and mucus accumulation. This was associated with lower numbers of lung innate lymphocyte cells (ILC2s) and CD4+ T cells producing IL-5+ or IL-13+ and increased IFNγ+ CD4+ and CD8+ T cells, in addition to RSV F-specific CD8+ T cells. These data suggest that in the absence of preimmunity, stabilized PreF antigens may still be associated with aberrant Th2 responses that induce lung pathology in response to RSV infection, and can be prevented by formulation with more Th1/Th2-balanced adjuvants that enhance CD4+ and CD8+ IFNγ+ T cell responses. This may support the use of stabilized PreF antigens with Th1/Th2-balanced adjuvants like, Advax-SM, as safer alternatives to alum in RSV vaccine candidates.


Subject(s)
Adjuvants, Immunologic/pharmacology , Aluminum Hydroxide/pharmacology , Lung/drug effects , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus Vaccines/pharmacology , Respiratory Syncytial Viruses/drug effects , Th2 Cells/drug effects , Viral Fusion Proteins/pharmacology , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Cytokines/immunology , Cytokines/metabolism , Disease Models, Animal , Female , Immunity, Humoral/drug effects , Immunization , Immunogenicity, Vaccine/drug effects , Lung/immunology , Lung/pathology , Lung/virology , Mice, Inbred BALB C , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus Infections/pathology , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Viruses/immunology , Respiratory Syncytial Viruses/pathogenicity , Th1-Th2 Balance/drug effects , Th2 Cells/immunology , Th2 Cells/metabolism , Th2 Cells/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...