Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 155
Filter
1.
J Sci Food Agric ; 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39373620

ABSTRACT

BACKGROUND: Emulsions are thermally unstable systems. This research aimed to investigate the thermal stability of fish gelatin (FG) oil-in-water emulsions in the presence of poly-γ-glutamic acid (γ-PGA) as an additive after heat treatment. The study assessed how γ-PGA influences the thermal stability of FG emulsions over time, focusing on their properties, structure, and food application potential. RESULTS: The incorporation of γ-PGA significantly enhanced the thermal stability of FG emulsions, preserving their morphology after heating. Emulsions containing 0.1% γ-PGA showed no significant changes after 24 h at 90 °C, while emulsions without γ-PGA experienced noticeable delamination. Rheological evaluations revealed that the energy storage modulus and loss modulus of FG-γ-PGA emulsions remained consistently higher than those of FG emulsions, regardless of heating duration. Particle size analysis indicated minimal changes for FG-γ-PGA emulsions (413 nm after 24 h) compared to a substantial increase for FG emulsions (1598 nm). After heating, FG-γ-PGA emulsions demonstrated significantly higher emulsifying activity index (EAI) (74 m2 g-1 versus 22.7 m2 g-1) and emulsifying stability index (ESI) (97% versus 76%). Additionally, the texture properties of meat mince formulated with FG-γ-PGA emulsions were comparable to those containing fat, showcasing their potential as a fat replacement. CONCLUSION: The study concludes that γ-PGA enhances the thermal stability of FG emulsions, maintaining their integrity and improving functional properties under heat treatment. These findings offer valuable insights for the formulation of thermally stable emulsions, presenting promising opportunities for innovative applications in the food industry. © 2024 Society of Chemical Industry.

2.
Int J Biol Macromol ; 279(Pt 4): 135322, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39236946

ABSTRACT

The study aimed to investigating the mechanisms of relieved intestinal barrier damage by dynamic high-pressure microfluidization assisted with galactooligosaccharide- glycated whey protein isolate. The modifications changed the multi-structure, and the modified whey protein isolate could promote the proliferation of IEC-6 cells and contributed to the restoration of LPS-induced occludin damage in IEC-6 cells. Also, it could repair cyclophosphamide-induced ileal villus rupture and crypt destruction in BALB/c mice, significantly altered the abundance of dominant bacteria, which were associated with propionic acid, butyric acid, isovaleric acid, and valeric acid. Ileum transcriptomics revealed that the modified whey protein isolate significantly regulate of the levels of Cstad, Cyp11a1, and Hs6st2 genes, relating to the increase of propionic acid, isovaleric acid, and valeric acid. In conclusion, galactooligosaccharide- modified whey protein isolate could regulate the level of Cstad, Cyp11a1 and Hs6st2 genes by altering the gut microbial structure and the level of SCFAs, thereby repairing the intestinal barrier.


Subject(s)
Intestinal Mucosa , Oligosaccharides , Whey Proteins , Animals , Whey Proteins/pharmacology , Whey Proteins/chemistry , Oligosaccharides/pharmacology , Oligosaccharides/chemistry , Mice , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Mice, Inbred BALB C , Pressure , Gastrointestinal Microbiome/drug effects , Male , Rats , Cell Line
3.
Int J Biol Macromol ; 278(Pt 1): 134642, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39128745

ABSTRACT

The effect of whey protein isolate (WPI)- galacto-oligosaccharides (GOS)/fructo-oligosaccharides (FOS) conjugates on RAW264.7 cells, and further the effect of WPI-GOS conjugates on CTX-induced immunosuppressed mice were investigated. Compared to WPI-FOS conjugates, WPI-GOS conjugates exhibited deeper glycation extent, more pronounced structural unfolding and helix-destabilizing, and obviously improved functional indicators of RAW264.7 macrophages. In addition, WPI-GOS conjugates also repaired immune organ and intestinal barrier and increased IL-1ß and IFN-γ levels in immunosuppressed mice. The alteration of gut microbiota induced by WPI-GOS conjugates changed the serum metabolites, causing the activation of NFκB pathway, which strengthens the immune system. The activation of NFκB pathway maybe associated with the mTOR signal pathway and ABC transporters. However, the precise mechanisms by which NFκB pathway interacts with mTOR signal pathway and ABC transporters to modulate the immune response need for further research.


Subject(s)
Cyclophosphamide , NF-kappa B , Oligosaccharides , Whey Proteins , Animals , Mice , Cyclophosphamide/pharmacology , Oligosaccharides/pharmacology , Oligosaccharides/chemistry , Whey Proteins/chemistry , Whey Proteins/pharmacology , RAW 264.7 Cells , NF-kappa B/metabolism , Immunosuppression Therapy , Gastrointestinal Microbiome/drug effects , Signal Transduction/drug effects , Male , TOR Serine-Threonine Kinases/metabolism
4.
Food Chem ; 460(Pt 2): 140605, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39068806

ABSTRACT

We prepared the ß-lactoglobulin (BLG)-ferulic acid (FA)-glucose (Glu) conjugates by alkaline method and Maillard reaction to assess the allergenicity. FA and Glu can form a ternary covalent conjugate with BLG, as evidenced by the shortening of SEC retention time, upward migration of SDS-PAGE protein bands, considerable decrease in free amino and sulfhydryl content, and changes in multistructure. BLG-Glu-FA conjugates weakly bound to immunoglobulin E in allergic sera was weak, reduced interleukin 4 and tumor necrosis factor α levels in RBL-2H3 cells and histamin and interleukin 6 secretion levels in KU812 cells, and inhibited the nuclear factor-κB signaling pathway. In vivo experiments showed that the conjugates regulated T-cell homeostasis in mouse splenic and mesenteric lymphocytes and attenuated splenic and duodenal immune injury. Therefore, the conjugates of BLG with FA combined with Glu altered the epitope structure and exhibited low allergenicity.


Subject(s)
Allergens , Coumaric Acids , Glucose , Lactoglobulins , Animals , Lactoglobulins/chemistry , Lactoglobulins/immunology , Mice , Coumaric Acids/chemistry , Humans , Allergens/immunology , Allergens/chemistry , Glucose/chemistry , Immunoglobulin E/immunology , Mice, Inbred BALB C , Female , Cattle
5.
Nat Chem Biol ; 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39060393

ABSTRACT

Phospholipid and nucleotide syntheses are fundamental metabolic processes in eukaryotic organisms, with their dysregulation implicated in various disease states. Despite their importance, the interplay between these pathways remains poorly understood. Using genetic and metabolic analyses in Saccharomyces cerevisiae, we elucidate how cytidine triphosphate usage in the Kennedy pathway for phospholipid synthesis influences nucleotide metabolism and redox balance. We find that deficiencies in the Kennedy pathway limit nucleotide salvage, prompting compensatory activation of de novo nucleotide synthesis and the pentose phosphate pathway. This metabolic shift enhances the production of antioxidants such as NADPH and glutathione. Moreover, we observe that the Kennedy pathway for phospholipid synthesis is inhibited during replicative aging, indicating its role in antioxidative defense as an adaptive mechanism in aged cells. Our findings highlight the critical role of phospholipid synthesis pathway choice in the integrative regulation of nucleotide metabolism, redox balance and membrane properties for cellular defense.

6.
J Agric Food Chem ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38833376

ABSTRACT

This study found that, after microwave treatment at 560 W for 30 s, alkaline protease enzymolysis significantly reduced the allergenicity of ovalbumin (OVA). Furthermore, specific adsorption of allergenic anti-enzyme hydrolyzed peptides in the enzymatic products by immunoglobulin G (IgG) bound to magnetic bead further decreased the allergenicity of OVA. The results indicated that microwave treatment disrupts the structure of OVA, increasing the accessibility of OVA to the alkaline protease. A comparison between 17 IgG-binding epitopes identified through high-performance liquid chromatography-higher energy collisional dissociation-tandem mass spectrometry and previously reported immunoglobulin E (IgE)-binding epitopes revealed a complete overlap in binding epitopes at amino acids (AA)125-135, AA151-158, AA357-366, and AA373-381. Additionally, partial overlap was observed at positions AA41-59, AA243-252, and AA320-340. Consequently, these binding epitopes were likely pivotal in eliciting the allergic reaction to OVA, warranting specific attention in future studies. In conclusion, microwave-assisted enzymolysis synergized with magnetic bead adsorption provides an effective method to reduce the allergenicity of OVA.

7.
Int J Biol Macromol ; 273(Pt 2): 133045, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38942666

ABSTRACT

This work was to investigate the effect of four prebiotic saccharides gum arabic (GA), fructooligosaccharide (FOS), konjac glucomannan (KGM), and inulin (INU) incorporation on the encapsulation efficiency (EE), physicochemical stability, and in vitro digestion of urolithin A-loaded liposomes (UroA-LPs). The regulation of liposomes on gut microbiota was also investigated by in vitro colonic fermentation. Results indicated that liposomes coated with GA showed the best EE, bioaccessibility, storage and thermal stability, the bioaccessibility was 1.67 times of that of UroA-LPs. The UroA-LPs coated with FOS showed the best freeze-thaw stability and transformation. Meanwhile, saccharides addition remarkably improved the relative abundance of Bacteroidota, reduced the abundances of Proteobacteria and Actinobacteria. The UroA-LPs coated with FOS, INU, and GA exhibited the highest beneficial bacteria abundance of Parabacteroides, Monoglobus, and Phascolarctobacterium, respectively. FOS could also decrease the abundance of harmful bacteria Collinsella and Enterococcus, and increase the levels of acetic acid, butyric acid and iso-butyric acid. Consequently, prebiotic saccharides can improve the EE, physicochemical stability, gut microbiota regulation of UroA-LPs, and promote the bioaccessibility of UroA, but the efficiency varied based on saccharides types, which can lay a foundation for the application of UroA in foods industry and for the enhancement of its bio-activities.


Subject(s)
Gastrointestinal Microbiome , Liposomes , Prebiotics , Gastrointestinal Microbiome/drug effects , Liposomes/chemistry , Polymerization , Coumarins/chemistry , Coumarins/metabolism , Fermentation
8.
J Agric Food Chem ; 72(20): 11746-11758, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38718253

ABSTRACT

A novel strategy combining ferulic acid and glucose was proposed to reduce ß-lactoglobulin (BLG) allergenicity and investigate whether the reduction in allergenicity was associated with gut microbiome and serum metabolism. As a result, the multistructure of BLG changed, and the modified BLG decreased significantly the contents of IgE, IgG, IgG1, and mMCP-1 in serum, improved the diversity and structural composition of gut microbiota, and increased the content of short-chain fatty acids (SCFAs) in allergic mice. Meanwhile, allergic mice induced by BLG affected arachidonic acid, tryptophan, and other metabolic pathways in serum, the modified BLG inhibited the production of metabolites in arachidonic acid metabolism pathway and significantly increased tryptophan metabolites, and this contribution helps in reducing BLG allergenicity. Overall, reduced allergenicity of BLG after ferulic acid was combined with glucose modification by regulating gut microbiota, the metabolic pathways of arachidonic acid and tryptophan. The results may offer new thoughts alleviating the allergy risk of allergenic proteins.


Subject(s)
Allergens , Coumaric Acids , Gastrointestinal Microbiome , Glucose , Lactoglobulins , Coumaric Acids/metabolism , Coumaric Acids/chemistry , Animals , Lactoglobulins/immunology , Lactoglobulins/chemistry , Lactoglobulins/metabolism , Mice , Humans , Allergens/immunology , Allergens/chemistry , Allergens/metabolism , Glucose/metabolism , Female , Bacteria/immunology , Bacteria/metabolism , Bacteria/classification , Bacteria/genetics , Mice, Inbred BALB C , Immunoglobulin E/immunology , Immunoglobulin E/blood , Fatty Acids, Volatile/metabolism , Cattle , Immunoglobulin G/immunology , Immunoglobulin G/blood , Milk Hypersensitivity/immunology
9.
Orphanet J Rare Dis ; 19(1): 155, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38605407

ABSTRACT

BACKGROUND: Glycogen storage disease type Ib (GSD Ib) is a rare disorder characterized by impaired glucose homeostasis caused by mutations in the SLC37A4 gene. It is a severe inherited metabolic disease associated with hypoglycemia, hyperlipidemia, lactic acidosis, hepatomegaly, and neutropenia. Traditional treatment consists of feeding raw cornstarch which can help to adjust energy metabolism but has no positive effect on neutropenia, which is fatal for these patients. Recently, the pathophysiologic mechanism of the neutrophil dysfunction and neutropenia in GSD Ib has been found, and the treatment with the SGLT2 inhibitor empaglifozin is now well established. In 2020, SGLT2 inhibitor empagliflozin started to be used as a promising efficient remover of 1,5AG6P in neutrophil of GSD Ib patients worldwide. However, it is necessary to consider long-term utility and safety of a novel treatment. RESULTS: In this study, we retrospectively examined the clinical manifestations, biochemical examination results, genotypes, long-term outcomes and follow-up of thirty-five GSD Ib children who visited our department since 2009. Fourteen patients among them underwent empagliflozin treatment since 2020. This study is the largest cohort of pediatric GSD Ib patients in China as well as the largest cohort of pediatric GSD Ib patients treated with empagliflozin in a single center to date. The study also discussed the experience of long-term management on pediatric GSD Ib patients. CONCLUSION: Empagliflozin treatment for pediatric GSD Ib patients is efficient and safe. Increase of urine glucose is a signal for pharmaceutical effect, however attention to urinary infection and hypoglycemia is suggested.


Subject(s)
Benzhydryl Compounds , Glycogen Storage Disease Type I , Sodium-Glucose Transporter 2 Inhibitors , Child , Humans , Antiporters , Follow-Up Studies , Glucose , Glucosides , Glycogen Storage Disease Type I/drug therapy , Hypoglycemia , Monosaccharide Transport Proteins/genetics , Neutropenia , Retrospective Studies , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use
10.
Front Nutr ; 11: 1343394, 2024.
Article in English | MEDLINE | ID: mdl-38571750

ABSTRACT

In this work, the effect of the addition of γ-polyglutamic acid (γ-PGA) on the rheology, physicochemical properties, and microstructure of fish gelatin (FG) emulsion gel was investigated. Samples of the emulsion gel were evaluated for rheological behavior and stability prior to gelation. The mechanical properties and water-holding capacity (WHC) of the emulsion were determined after gelation. The microstructure of the emulsion gel was further examined using confocal laser scanning microscopy (CLSM). The results indicated a gradual increase in the apparent viscosity and gelation temperature of the emulsion at a higher concentration of γ-PGA. Additionally, frequency scan results revealed that on the addition of γ-PGA, FG emulsion exhibited a stronger structure. The emulsion containing 0.1% γ-PGA exhibited higher stability than that of the control samples. The WHC and gel strength of the emulsion gel increased on increasing the γ-PGA concentration. CLSM images showed that the addition of γ-PGA modified the structure of the emulsion gel, and the droplets containing 0.1% γ-PGA were evenly distributed. Moreover, γ-PGA could regulate the droplet size of the FG emulsion and its size distribution. These findings suggest that the viscoelasticity and structure of FG emulsion gels could be regulated by adjusting the γ-PGA concentration. The γ-PGA-modified FG emulsion gel also exhibited improved rheology and physicochemical properties. The results showed that γ-PGA-modified FG emulsion gel may find potential applications in food, medicine, cosmetics, and other industries.

11.
Heliyon ; 10(5): e27371, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38486777

ABSTRACT

Ibuprofen is classified as a non-steroidal anti-inflammatory drug (NSAID) that is employed as an initial treatment option for its non-steroidal anti-inflammatory, pain-relieving, and antipyretic properties. However, Ibuprofen is linked to specific well-known gastrointestinal adverse effects like ulceration and gastrointestinal bleeding. It has been linked to harmful effects on the liver, kidney, and heart. The purpose of the study is to create novel and potential IBU analogue with reduced side effects with the enhancement of their medicinal effects, so as to advance the overall safety profile of the drug. The addition of some novel functional groups including CH3, F, CF3, OCF3, Cl, and OH at various locations in its core structure suggestively boost the chemical as well as biological action. The properties of these newly designed structures were analyzed through chemical, physical, and spectral calculations using Density Functional Theory (DFT) and time-dependent DFT through B3LYP/6-31 g (d,p) basis set for geometry optimization. Molecular docking and non-bonding interaction studies were conducted by means of the human prostaglandin synthase protein (PDB ID: 5F19) to predict binding affinity, interaction patterns, and the stability of the protein-drug complex. Additionally, ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) and PASS (Prediction of Activity Spectra for Substances) predictions were employed to evaluate the pharmacokinetic and toxicological properties of these structures. Importantly, most of the analogues displayed reduced hepatotoxicity, nephrotoxicity, and carcinogenicity in comparison to the original drug. Moreover, molecular docking analyses indicated improved medicinal outcomes, which were further supported by pharmacokinetic calculations. Together, these findings suggest that the modified structures have reduced adverse effects along with improved therapeutic action compared to the parent drug.

12.
Arch Toxicol ; 98(1): 181-205, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37971544

ABSTRACT

Acrylamide is an environmental electrophile that has been produced in large amounts for many years. There is concern about the adverse health effects of acrylamide exposure due to its widespread industrial use and also presence in commonly consumed foods and others. IL-1ß is a key cytokine that protects the brain from inflammatory insults, but its role in acrylamide-induced neurotoxicity remains unknown. We reported recently that deletion of IL-1ß gene exacerbates ACR-induced neurotoxicity in mice. The aim of this study was to identify genes or signaling pathway(s) involved in enhancement of ACR-induced neurotoxicity by IL-1ß gene deletion or ACR-induced neurotoxicity to generate a hypothesis mechanism explaining ACR-induced neurotoxicity. C57BL/6 J wild-type and IL-1ß KO mice were exposed to ACR at 0, 12.5, 25 mg/kg by oral gavage for 7 days/week for 4 weeks, followed by extraction of mRNA from mice cerebral cortex for RNA sequence analysis. IL-1ß deletion altered the expression of genes involved in extracellular region, including upregulation of PFN1 gene related to amyotrophic lateral sclerosis and increased the expression of the opposite strand of IL-1ß. Acrylamide exposure enhanced mitochondria oxidative phosphorylation, synapse and ribosome pathways, and activated various pathways of different neurodegenerative diseases, such as Alzheimer disease, Parkinson disease, Huntington disease, and prion disease. Protein network analysis suggested the involvement of different proteins in related to learning and cognitive function, such as Egr1, Egr2, Fos, Nr4a1, and Btg2. Our results identified possible pathways involved in IL-1ß deletion-potentiated and ACR-induced neurotoxicity in mice.


Subject(s)
Acrylamide , Neurotoxicity Syndromes , Animals , Mice , Acrylamide/toxicity , Brain , Cerebral Cortex , Gene Expression Profiling , Mice, Inbred C57BL , Neurotoxicity Syndromes/genetics
13.
Food Res Int ; 175: 113763, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38129056

ABSTRACT

The influence of ultrasonic pretreatment on the release and antioxidant activity of potential antioxidant peptides after in-vitro simulated gastrointestinal digestion of ß-lactoglobulin (BLG) were measured by HPLC-MS/MS, chemical and cellular-based assays. The gastrointestinal digest was fractionated into four fractions by Sephadex G-25 gel filtration column, and fractions showed a considerable ABTS·+ scavenging ability. The fraction with the strongest antioxidant activity was produced by ultrasonicated BLG after gastrointestinal digestion, which relies on ultrasonic-promoted proteolysis to produce many small-molecule antioxidant peptides. The best active fraction has better cellular antioxidant activity and protection of H2O2-induced oxidative HepG2 cell model, which significantly increases the activities of antioxidant enzyme, and is concentration-dependent. HPLC-MS/MS analysis showed that there were more potential antioxidant peptides in the best active fraction. This research will provide a basis for the further application of ultrasonic in dairy products, which can promote the release of more potential antioxidant peptides-derived from gastrointestinal digestion.


Subject(s)
Antioxidants , Lactoglobulins , Antioxidants/analysis , Lactoglobulins/chemistry , Tandem Mass Spectrometry , Hydrogen Peroxide , Peptides/chemistry , Digestion
14.
J Agric Food Chem ; 71(41): 15363-15374, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37797215

ABSTRACT

Ovalbumin (OVA) is a major allergen in hen eggs. Enzymolysis has been demonstrated as an efficient method for reducing OVA allergenicity. This study demonstrates that microwave pretreatment (MP) at 400 W for 20 s assisting bromelain enzymolysis further decreases the allergenicity of OVA, which was attributed to the increase in the degree of hydrolysis and promoted the destruction of IgE-binding epitopes. The results showed that MP could promote OVA unfolding, expose hydrophobic domains, and disrupt tightly packed α-helical structures and disulfide bonds, which increased the degree of hydrolysis by 7.28% and the contents of peptides below 1 kDa from 43.55 to 85.06% in hydrolysates compared with that for untreated OVA. Biological mass spectrometry demonstrated that the number of intact IgE-binding epitope peptides in MP-assisted OVA hydrolysates decreased by 533 compared to that in hydrolysis without MP; consequently, their IgG/IgE binding rates decreased more significantly. Therefore, MP-assisted enzymolysis may provide an alternative method for decreasing the OVA allergenicity.


Subject(s)
Allergens , Chickens , Animals , Female , Ovalbumin/chemistry , Allergens/chemistry , Chickens/metabolism , Microwaves , Peptides , Mass Spectrometry , Epitopes , Immunoglobulin E/metabolism
15.
Int J Biol Macromol ; 253(Pt 7): 127554, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37865359

ABSTRACT

Urolithin A (UroA) is gut metabolites of ellagitannins possessing a vast range of biological activities, but its poor water solubility and low bioavailability hinder its potential applications. This study utilized the pH dependent dissolution characteristics of UroA and employed a simple pH-driven method to load UroA into liposomes. The characterization and stability of obtained liposomes under different conditions were evaluated, and their oral bioavailability was tested by pharmacokinetics, and compared with UroA liposomes prepared using traditional thin film dispersion (TFM-ULs). Results indicated that liposomes could effectively encapsulate UroA. The UroA liposomes prepared by the pH-driven method (PDM-ULs) showed lower particle size, polydispersity index, zeta potential, and higher encapsulation efficiency than TFM-ULs. Interestingly, better thermal stability, storage stability, in vitro digestion stability, and higher bioaccessibility were also found on PDM-ULs. Moreover, pharmacokinetic experiments in rats demonstrated that PDM-ULs could significantly improve the bioavailability of UroA, with an absorption efficiency 1.91 times that of TFM-ULs. Therefore, our findings suggest that liposomes prepared by pH-driven methods have great potential in improving the stability and bioavailability of UroA.


Subject(s)
Coumarins , Liposomes , Rats , Animals , Biological Availability , Hydrogen-Ion Concentration , Particle Size
16.
Toxicol Sci ; 195(2): 246-256, 2023 09 28.
Article in English | MEDLINE | ID: mdl-37540211

ABSTRACT

Acrylamide is a neurotoxicant in human and experimental animals. Interleukin-1ß (IL-1ß) is a proinflammatory cytokine known as a critical component of brain reaction to any insult or neurodegenerative pathologies, though its role in electrophile-induced neurotoxicity remains elusive. The aim of this study was to investigate the role of IL-1ß in acrylamide-induced neurotoxicity in mice. Ten-week-old male wild-type and IL-1ß knock-out mice were allocated into 3 groups each and exposed to acrylamide at 0, 12.5, 25 mg/kg body weight by oral gavage for 28 days. Compared with wild-type mice, the results showed a significant increase in landing foot spread test and a significant decrease in density of cortical noradrenergic axons in IL-1ß KO mice exposed to acrylamide at 25 mg/kg body weight. Exposure to acrylamide at 25 mg/kg significantly increased cortical gene expression of Gclc, Gpx1, and Gpx4 in wild-type mice but decreased them in IL-1ß KO mice. The same exposure level significantly increased total glutathione and oxidized glutathione (GSSG) in the cerebellum of wild-type mice but neither changed total glutathione nor decreased GSSG in the cerebellum of IL-1ß KO mice. The basal level of malondialdehyde in the cerebellum was higher in IL-1ß KO mice than in wild-type mice. The results suggest that IL-1ß protects the mouse brain against acrylamide-induced neurotoxicity, probably through suppression of oxidative stress by glutathione synthesis and peroxidation. This unexpected result provides new insight on the protective role of IL-1ß in acrylamide-induced neurotoxicity.


Subject(s)
Acrylamide , Neurotoxicity Syndromes , Humans , Mice , Male , Animals , Interleukin-1beta/genetics , Acrylamide/toxicity , Glutathione Disulfide/metabolism , Oxidative Stress , Neurotoxicity Syndromes/genetics , Neurotoxicity Syndromes/metabolism , Glutathione/metabolism , Body Weight , Mice, Knockout
17.
Toxicol Sci ; 195(1): 28-41, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37326970

ABSTRACT

1,2-Dichloropropane (1,2-DCP) is recognized as the causative chemical of occupational cholangiocarcinoma in printing workers in Japan. However, the cellular and molecular mechanisms of 1,2-DCP-induced carcinogenesis remains elusive. The present study investigated cellular proliferation, DNA damage, apoptosis, and expression of antioxidant and proinflammatory genes in the liver of mice exposed daily to 1,2-DCP for 5 weeks, and the role of nuclear factor erythroid 2-related factor 2 (Nrf2) in these responses. Wild-type and Nrf2-knockout (Nrf2-/-) mice were administered 1,2-DCP by gastric gavage, and then the livers were collected for analysis. Immunohistochemistry for BrdU or Ki67 and TUNEL assay revealed that exposure to 1,2-DCP dose-dependently increased proliferative cholangiocytes, whereas decreased apoptotic cholangiocytes in wild-type mice but not in Nrf2-/- mice. Western blot and quantitative real-time PCR showed that exposure to 1,2-DCP increased the levels of DNA double-strand break marker γ-H2AX and mRNA expression levels of NQO1, xCT, GSTM1, and G6PD in the livers of wild-type mice in a dose-dependent manner, but no such changes were noted in Nrf2-/- mice. 1,2-DCP increased glutathione levels in the liver of both the wild-type and Nrf2-/- mice, suggesting that an Nrf2-independent mechanism contributes to 1,2-DCP-induced increase in glutathione level. In conclusion, the study demonstrated that exposure to 1,2-DCP induced proliferation but reduced apoptosis in cholangiocytes, and induced double-strand DNA breaks and upregulation of antioxidant genes in the liver in an Nrf2-dependent manner. The study suggests a role of Nrf2 in 1,2-DCP-induced cell proliferation, antiapoptotic effect, and DNA damage, which are recognized as key characteristics of carcinogens.


Subject(s)
Bile Duct Neoplasms , Hydrocarbons, Chlorinated , Mice , Animals , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Antioxidants/pharmacology , Liver , Hydrocarbons, Chlorinated/toxicity , Cell Proliferation , Bile Ducts, Intrahepatic , Bile Duct Neoplasms/chemically induced , Bile Duct Neoplasms/metabolism , Bile Duct Neoplasms/pathology , DNA Damage , Glutathione/metabolism
18.
Int J Mol Sci ; 24(12)2023 06 08.
Article in English | MEDLINE | ID: mdl-37373040

ABSTRACT

Epidemiological studies showed the association between air pollution and dementia. A soluble fraction of particulate matters including polycyclic aromatic hydrocarbons (PAHs) is suspected to be involved with the adverse effects of air pollution on the central nervous system of humans. It is also reported that exposure to benzopyrene (B[a]P), which is one of the PAHs, caused deterioration of neurobehavioral performance in workers. The present study investigated the effect of B[a]P on noradrenergic and serotonergic axons in mouse brains. In total, 48 wild-type male mice (10 weeks of age) were allocated into 4 groups and exposed to B[a]P at 0, 2.88, 8.67 or 26.00 µg/mice, which is approximately equivalent to 0.12, 0.37 and 1.12 mg/kg bw, respectively, by pharyngeal aspiration once/week for 4 weeks. The density of noradrenergic and serotonergic axons was evaluated by immunohistochemistry in the hippocampal CA1 and CA3 areas. Exposure to B[a]P at 2.88 µg/mice or more decreased the density of noradrenergic or serotonergic axons in the CA1 area and the density of noradrenergic axons in the CA3 area in the hippocampus of mice. Furthermore, exposure to B[a]P dose-dependently upregulated Tnfα at 8.67 µg/mice or more, as well as upregulating Il-1ß at 26 µg/mice, Il-18 at 2.88 and 26 µg/mice and Nlrp3 at 2.88 µg/mice. The results demonstrate that exposure to B[a]P induces degeneration of noradrenergic or serotonergic axons and suggest the involvement of proinflammatory or inflammation-related genes with B[a]P-induced neurodegeneration.


Subject(s)
Benzo(a)pyrene , Polycyclic Aromatic Hydrocarbons , Humans , Male , Mice , Animals , Infant, Newborn , Benzo(a)pyrene/toxicity , Axons , Brain , Hippocampus
19.
Nat Commun ; 14(1): 2504, 2023 05 02.
Article in English | MEDLINE | ID: mdl-37130856

ABSTRACT

Methionine restriction (MR) provides metabolic benefits in many organisms. However, mechanisms underlying the MR-induced effect remain incompletely understood. Here, we show in the budding yeast S. cerevisiae that MR relays a signal of S-adenosylmethionine (SAM) deprivation to adapt bioenergetic mitochondria to nitrogenic anabolism. In particular, decreases in cellular SAM constrain lipoate metabolism and protein lipoylation required for the operation of the tricarboxylic acid (TCA) cycle in the mitochondria, leading to incomplete glucose oxidation with an exit of acetyl-CoA and α-ketoglutarate from the TCA cycle to the syntheses of amino acids, such as arginine and leucine. This mitochondrial response achieves a trade-off between energy metabolism and nitrogenic anabolism, which serves as an effector mechanism promoting cell survival under MR.


Subject(s)
Amino Acids , Methionine , Amino Acids/metabolism , Methionine/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Lipoylation , Mitochondria/metabolism , Racemethionine/metabolism
20.
Food Chem X ; 18: 100673, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37091513

ABSTRACT

Gelatin emulsion was an important process for preparing gelatin films. A gelatin film with water resistance and ductility could be prepared using gelatin emulsion, whereas the prepared gelatin film has several defects (e.g., low tensile strength and poor thermal stability). This study aimed to modify gelatin emulsion through ultrasonic treatment, then gelatin film was prepared by the modified gelatin emulsion. The results showed that: under the condition of ultrasonic treatment for 12 min at 400 w, zeta potential and viscosity of gelatin emulsion were the largest; thickness, water vapor permeability (WVP) and water solubility (WS) of corresponding gelatin film were the lowest, and the tensile strength (TS), elongation at break (EAB), denaturation temperature (Tm) and enthalpy value (ΔH) of corresponding gelatin film were the highest. The above result suggested that ultrasonic treatment can be used to prepare a gelatin film with better quality by regulating the properties of gelatin emulsion, and a certain correlation was found between the properties of gelatin emulsion and the properties of gelatin film.

SELECTION OF CITATIONS
SEARCH DETAIL