Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Mol Pharmacol ; 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38258594

ABSTRACT

BACKGROUND: Pancreatic fibrosis is a hallmark feature of chronic pancreatitis (CP), resulting in persistent damage to the pancreas. The sustained activation of pancreatic stellate cells (PSCs) plays a pivotal role in the progression of pancreatic fibrosis and is a major source of extracellular matrix (ECM) deposition during pancreatic injury. METHODS: Calpain is a calcium-independent lysosomal neutral cysteine endopeptidase and was found to be correlated to various fibrotic diseases. Studies have revealed that calpeptin, a calpain inhibitor, can improve the fibrosis process of multiple organs. This study investigated the effect of the calpain inhibitor, calpeptin, on fibrosis in experimental CP and activation of cultured PSCs in mice. CP was induced in mice by repeated injections of cerulein for four weeks in vivo, and the activation process of mouse PSCs was isolated and cultured in vitro. Then, the inhibitory effect of calpeptin on pancreatic fibrosis was confirmed based on the histological damage of CP, the expression of α-smooth muscle actin (α-SMA) and collagen-Iα1(Col1α1), and the decrease in mRNA levels of calpain-1 and calpain-2. RESULTS: In addition, it was revealed that calpeptin can inhibit the activation process of PSCs and induce significant PSCs apoptosis by downregulating the expression of calpain-1, calpain-2 and TGF-ß1, and the expression and phosphorylation of smad3 in vitro. CONCLUSION: These results suggest that the calpain inhibitor, calpeptin, plays a key role in the regulation of PSC activation by inhibiting the TGF-ß1/smad3 signaling pathway, which supports the potential of calpeptin as an inhibitor of pancreatic fibrosis in mice by interfering with calpain.

2.
Exp Cell Res ; 428(2): 113620, 2023 07 15.
Article in English | MEDLINE | ID: mdl-37156457

ABSTRACT

Although the patient's survival time in various cancers has significantly increased in recent decades, the overall 5-year survival rate of pancreatic ductal adenocarcinoma (PDAC) has remained virtually unchanged due to rapid progression and metastasis. While N-acetyltransferase 10 (NAT10) has been identified as a regulator of mRNA acetylation in many malignancies, its role in PDAC remains unclear. Here, we found that NAT10 mRNA and protein levels were upregulated in PDAC tissues. Increased NAT10 protein expression was significantly correlated with poor prognosis in PDAC patients. Through our experiments, we demonstrated that NAT10 acted as an oncogene to promote PDAC tumorigenesis and metastasis in vitro and in vivo. Mechanistically, NAT10 exerts its oncogenic effects by promoting mRNA stability of receptor tyrosine kinase AXL in an ac4C-dependent manner leading to increased AXL expression and further promoting PDAC cell proliferation and metastasis. Together, our findings highlight the critical of NAT10 in PDAC progression and reveal a novel epigenetic mechanism by which modified mRNA acetylation promotes PDAC metastasis.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Pancreatic Neoplasms/pathology , Carcinoma, Pancreatic Ductal/metabolism , Cell Proliferation/genetics , RNA, Messenger/genetics , N-Terminal Acetyltransferases , Pancreatic Neoplasms
3.
Esophagus ; 20(3): 581-586, 2023 07.
Article in English | MEDLINE | ID: mdl-36877412

ABSTRACT

BACKGROUND: To evaluate the long-term efficacy of transoral incisionless fundoplication (TIF) with Medigus Ultrasonic Surgical Endostapler (MUSE) for gastroesophageal reflux disease (GERD). METHODS: A total of 16 patients with proton pump inhibitor-dependent gastroesophageal reflux disease had undergone TIF by MUSE in Shanghai General Hospital (Shanghai, China)from March 2017 to December 2018. Patients were followed up at 6 months, and the GERD-health-related quality of life (GERD-HRQL) questionnaire score, the GERD questionnaire (GERD-Q) score, high-resolution esophageal manometry (HREM) and 24 h esophageal pH parameters, the Hill grade of the gastroesophageal flap valve (GEFV) and daily Proton pump inhibitor (PPI) consumption before and after procedure were compared. Patients also were followed up at 3 years and 5 years using a structured questionnaire via phone which evaluated symptoms of reflux, dose of PPI medication and side effects. RESULTS: Follow-up data were collected from 13 patients, ranging from 38 to 63 months, 53 months on average. 10/13 patients reported symptomatic improvement and daily PPI consumption was stopped or halved in 11/13. After procedure, the mean scores of GERD-HRQL and GERD-Q were significantly increased. The mean DeMeester score, the mean acid exposure time percentage and the mean number of acid reflux episodes were significantly lower. The mean rest pressure at lower esophageal sphincter (LES) had no significant difference. CONCLUSION: TIF by MUSE has significant efficacy in the treatment of PPI-dependent GERD, which can improve symptoms and life quality of patients, and reduce the acid exposure time for long-term. Chictr.org.cn. TRIAL REGISTRATION: ChiCTR2000034350.


Subject(s)
Fundoplication , Gastroesophageal Reflux , Humans , Fundoplication/adverse effects , Fundoplication/methods , Alprostadil/therapeutic use , Quality of Life , Proton Pump Inhibitors/therapeutic use , Ultrasonics , Treatment Outcome , China , Gastroesophageal Reflux/diagnosis
4.
Exp Mol Med ; 54(11): 1940-1954, 2022 11.
Article in English | MEDLINE | ID: mdl-36369467

ABSTRACT

Pancreatic cancer (PC) is one of the most malignant tumors. Rapid progression and distant metastasis are the main causes of patient death. Hypoxia is a hallmark of multiple cancers and is involved in tumor biology. However, little is known about the roles of circRNAs in glycolysis and hypoxia-mediated progression of PC. Here, the expression pattern of hypoxia-related circRNAs was analyzed using RNA sequencing. A unique circRNA termed circRNF13 was found to be upregulated in PC tissues and may be a potential prognostic indicator. HIF-1α and EIF4A3 are involved in regulating the biogenesis of circRNF13. Furthermore, circRNF13 was validated to exert a stimulative effect on cell proliferation, angiogenesis, invasion and glycolysis. Importantly, we found that circRNF13 promoted PDK3 levels by acting as a miR-654-3p sponge, thus promoting the PC malignant process. Collectively, our results reveal that hypoxia-induced circRNF13 mediated by HIF-1α and EIF4A3 promotes tumor progression and glycolysis in PC, indicating the potential of circRNF13 as a prognostic biomarker and therapeutic target for PC.


Subject(s)
MicroRNAs , Pancreatic Neoplasms , Humans , RNA, Circular/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Pancreatic Neoplasms/metabolism , Glycolysis/genetics , Hypoxia/metabolism , Pancreatic Neoplasms
5.
Sci Transl Med ; 14(664): eabn3586, 2022 09 28.
Article in English | MEDLINE | ID: mdl-36170444

ABSTRACT

Chronic pancreatitis (CP) is characterized by progressive fibrosis and exocrine dysregulation, which have long been considered irreversible. As a peripheral oscillator, the pancreas harbors autonomous and self-sustained timekeeping systems in both its endocrine and exocrine compartments, although the role of the latter remains poorly understood. By using different models of CP established in mice with dysfunctional pancreatic clocks, we found that the local clock played an important role in CP pathology, and genetic or external disruption of the pancreatic clock exacerbated fibrogenesis and exocrine insufficiency. Mechanistically, an impaired retinoic acid receptor-related orphan receptor A (Rora)/nuclear receptor subfamily 1, group D, member 1 (Nr1d1)/aryl hydrocarbon receptor nuclear translocator-like (Arntl or Bmal1) loop, called the circadian stabilizing loop, resulted in the deficiency of pancreatic Bmal1, which was responsible for controlling the fibrogenic properties of pancreatic stellate cells (PSCs) and for rewiring the function of acinar cells in a clock-TGF signaling-IL-11/IL-11RA axis-dependent manner. During PSC activation, the antagonistic interaction between Nr1d1 and Rora was unbalanced in response to the loss of cytoplasmic retinoid-containing lipid droplets. Patients with CP also exhibited reduced production of endogenous melatonin. Enhancing the clock through pharmacological restoration of the circadian stabilizing loop using a combination of melatonin and the Rora agonist SR1078 attenuated intrapancreatic pathological changes in mouse models of CP. Collectively, this study identified a protective role of the pancreatic clock against pancreatic fibrosis and exocrine dysfunction. Pancreatic clock-targeted therapy may represent a potential strategy to treat CP.


Subject(s)
Melatonin , Pancreatitis, Chronic , ARNTL Transcription Factors , Animals , Aryl Hydrocarbon Receptor Nuclear Translocator , Fibrosis , Interleukin-11/therapeutic use , Melatonin/therapeutic use , Mice , Nuclear Receptor Subfamily 1, Group D, Member 1 , Pancreas , Pancreatitis, Chronic/drug therapy , Pancreatitis, Chronic/pathology , Receptors, Retinoic Acid/genetics , Receptors, Retinoic Acid/therapeutic use , Retinoids/therapeutic use
6.
J Cell Physiol ; 234(12): 21988-21998, 2019 12.
Article in English | MEDLINE | ID: mdl-31058328

ABSTRACT

The severity of acute pancreatitis (AP) is greatly attributed to the pancreatic acinar cell (PAC) death response. It has been established that the apoptosis-inducing therapy can protect against experimental pancreatitis and have great clinical therapeutic potential. However, current pharmacologic agents that target apoptosis during AP largely lack specificity. Thus, it remains imperative to reveal the specific mechanisms governing acinar cell death. Death responses of PAC are manifested by the progressive necrosis accompanied by apoptosis silencing during AP in mice. In this study, we found that the transcriptional activity of p53 was impaired and the expressions of its proapoptotic targets Puma and CD95 were significantly decreased, which explains the apoptosis silencing during AP. Furthermore, we found that the functional depression of p53 was resulted from histone deacetylase (HDAC)-mediated deacetylation of p53 C-terminal in PAC during AP. Treatment of the HDAC inhibitor trichostatin-A restored p53 apoptosis pathway, resulted in a necrosis/apoptosis switch and protected mice from cerulein- or l-Arg-induced AP. Our research identified the HDAC-dependent regulation of p53 activity as a critical mechanism underlying acinar cell death response, which represents a specific target for the treatment of AP.


Subject(s)
Acinar Cells/metabolism , Histone Deacetylases/metabolism , Pancreatitis/metabolism , Tumor Suppressor Protein p53/metabolism , Acetylation , Acinar Cells/drug effects , Acinar Cells/pathology , Animals , Apoptosis/drug effects , Apoptosis/physiology , Disease Models, Animal , Histone Deacetylase Inhibitors/pharmacology , Male , Mice , Mice, Inbred C57BL , Necrosis , Pancreatitis/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...