Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Neuroinflammation ; 21(1): 35, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38287411

ABSTRACT

BACKGROUND: Microglia is the major contributor of post-stroke neuroinflammation cascade and the crucial cellular target for the treatment of ischemic stroke. Currently, the endogenous mechanism underlying microglial activation following ischemic stroke remains elusive. Serglycin (SRGN) is a proteoglycan expressed in immune cells. Up to now, the role of SRGN on microglial activation and ischemic stroke is largely unexplored. METHODS: Srgn knockout (KO), Cd44-KO and wild-type (WT) mice were subjected to middle cerebral artery occlusion (MCAO) to mimic ischemic stroke. Exogenous SRGN supplementation was achieved by stereotactic injection of recombinant mouse SRGN (rSRGN). Cerebral infarction was measured by 2,3,5-triphenyltetrazolium chloride (TTC) staining. Neurological functions were evaluated by the modified neurological severity score (mNSS) and grip strength. Microglial activation was detected by Iba1 immunostaining, morphological analysis and cytokines' production. Neuronal death was examined by MAP2 immunostaining and FJB staining. RESULTS: The expression of SRGN and its receptor CD44 was significantly elevated in the ischemic mouse brains, especially in microglia. In addition, lipopolysaccharide (LPS) induced SRGN upregulation in microglia in vitro. rSRGN worsened ischemic brain injury in mice and amplified post-stroke neuroinflammation, while gene knockout of Srgn exerted reverse impacts. rSRGN promoted microglial proinflammatory activation both in vivo and in vitro, whereas Srgn-deficiency alleviated microglia-mediated inflammatory response. Moreover, the genetic deletion of Cd44 partially rescued rSRGN-induced excessed neuroinflammation and ischemic brain injury in mice. Mechanistically, SRGN boosted the activation of NF-κB signal, and increased glycolysis in microglia. CONCLUSION: SRGN acts as a novel therapeutic target in microglia-boosted proinflammatory response following ischemic stroke.


Subject(s)
Brain Injuries , Brain Ischemia , Ischemic Stroke , Stroke , Vesicular Transport Proteins , Animals , Mice , Microglia/metabolism , Brain Ischemia/metabolism , Neuroinflammatory Diseases , Stroke/metabolism , Infarction, Middle Cerebral Artery/complications , Infarction, Middle Cerebral Artery/metabolism , Proteoglycans/metabolism , Ischemic Stroke/metabolism , Brain Injuries/metabolism
2.
Neurosci Bull ; 38(10): 1229-1247, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35513682

ABSTRACT

Ischemic stroke caused by intracranial vascular occlusion has become increasingly prevalent with considerable mortality and disability, which gravely burdens the global economy. Current relatively effective clinical treatments are limited to intravenous alteplase and thrombectomy. Even so, patients still benefit little due to the short therapeutic window and the risk of ischemia/reperfusion injury. It is therefore urgent to figure out the neuronal death mechanisms following ischemic stroke in order to develop new neuroprotective strategies. Regarding the pathogenesis, multiple pathological events trigger the activation of cell death pathways. Particular attention should be devoted to excitotoxicity, oxidative stress, and inflammatory responses. Thus, in this article, we first review the principal mechanisms underlying neuronal death mediated by these significant events, such as intrinsic and extrinsic apoptosis, ferroptosis, parthanatos, pyroptosis, necroptosis, and autophagic cell death. Then, we further discuss the possibility of interventions targeting these pathological events and summarize the present pharmacological achievements.


Subject(s)
Brain Ischemia , Ischemic Stroke , Reperfusion Injury , Stroke , Brain Ischemia/pathology , Cell Death , Humans , Reperfusion Injury/pathology , Stroke/pathology , Tissue Plasminogen Activator/therapeutic use
3.
Ann Transl Med ; 9(22): 1642, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34988151

ABSTRACT

BACKGROUND: Type 1 diabetes (T1D) is a multiple factor autoimmune disease characterized by T cell-mediated immune destruction of islet ß cells. Autologous hematopoietic stem cell transplantation (AHSCT) has been a novel strategy for patients with new-onset T1D, but not for those with a later diagnosis. Disturbance of regulatory T cells (Tregs) likely contributes to poor response after transplantation in later-stage T1D. Inhibition of phosphoinositide 3-kinases (PI3K)/Akt signaling maintains Tregs' homeostasis. METHODS: We built a later-stage streptozotocin (STZ)-induced T1D mouse model. Syngeneic bone marrow transplantation (syn-BMT) was performed 20 days after the onset of diabetes in combination with BKM120 (a PI3K inhibitor). Meanwhile, another group of STZ-diabetic mice were transplanted with bone marrow cells cocultured with BKM120 in vitro for 24 h. Fasting glucose and glucose tolerance were recorded during the entire experimental observation after syn-BMT. Samples were collected 126 days after syn-BMT. Hematoxylin and eosin (H&E) staining was used to detect the effect of PI3K inhibitor combined with syn-BMT on morphology of the T1D pancreas. CD4+CD25- T cells and CD4+CD25+ T cells were sorted by magnetic cell sorting (MACS), then fluorescence activated cell sorting (FACS) and quantitative real-time PCR (qPCR) were used to detect the effect of PI3K inhibitor on modulating immune disorder and restoring the function of Treg cells. RESULTS: Our investigation showed syn-BMT in combination with BKM120 effectively maintained normoglycemia in later-stage T1D. The disease remission effects may be induced by the rebalance of Th17/Tregs dysregulation and restoration of Tregs' immunosuppressive function by BKM120 after syn-BMT. CONCLUSIONS: These results may reveal important connections for PI3K/Akt inhibition and Tregs' homeostasis in T1D after transplantation. AHSCT combining immunoregulatory strategies such as PI3K inhibition may be a promising therapeutic approach in later-stage T1D.

SELECTION OF CITATIONS
SEARCH DETAIL
...