Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
J Immunol ; 181(10): 7367-79, 2008 Nov 15.
Article in English | MEDLINE | ID: mdl-18981160

ABSTRACT

Sunlight (UVB) triggers cutaneous lupus erythematosus (CLE) and systemic lupus through an unknown mechanism. We tested the hypothesis that UVB triggers CLE through a CSF-1-dependent, macrophage (Mø)-mediated mechanism in MRL-Fas(lpr) mice. By constructing mutant MRL-Fas(lpr) strains expressing varying levels of CSF-1 (high, intermediate, none), and use of an ex vivo gene transfer to deliver CSF-1 intradermally, we determined that CSF-1 induces CLE in lupus-susceptible MRL-Fas(lpr) mice, but not in lupus-resistant BALB/c mice. UVB incites an increase in Møs, apoptosis in the skin, and CLE in MRL-Fas(lpr), but not in CSF-1-deficient MRL-Fas(lpr) mice. Furthermore, UVB did not induce CLE in BALB/c mice. Probing further, UVB stimulates CSF-1 expression by keratinocytes leading to recruitment and activation of Møs that, in turn, release mediators, which induce apoptosis in keratinocytes. Thus, sunlight triggers a CSF-1-dependent, Mø-mediated destructive inflammation in the skin leading to CLE in lupus-susceptible MRL-Fas(lpr) but not lupus-resistant BALB/c mice. Taken together, CSF-1 is envisioned as the match and lupus susceptibility as the tinder leading to CLE.


Subject(s)
Lupus Erythematosus, Systemic/etiology , Lupus Erythematosus, Systemic/pathology , Macrophage Colony-Stimulating Factor/genetics , Skin Diseases/pathology , Sunlight/adverse effects , Adoptive Transfer , Animals , Enzyme-Linked Immunosorbent Assay , Fibroblasts/metabolism , Fibroblasts/pathology , Flow Cytometry , Fluorescent Antibody Technique , Gene Expression , Immunohistochemistry , Keratinocytes/metabolism , Keratinocytes/pathology , Lupus Erythematosus, Systemic/immunology , Macrophage Colony-Stimulating Factor/metabolism , Macrophages/immunology , Macrophages/metabolism , Mice , Mice, Inbred MRL lpr , Mice, Transgenic , Skin Diseases/etiology , Skin Diseases/immunology
2.
Diabetes ; 57(6): 1605-17, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18375440

ABSTRACT

OBJECTIVE: Chronic pancreatitis, characterized by pancreatic exocrine tissue destruction with initial maintenance of islets, eventually leads to insulin-dependent diabetes in most patients. Mice deficient for the transcription factors E2F1 and E2F2 suffer from a chronic pancreatitis-like syndrome and become diabetic. Surprisingly, onset of diabetes can be prevented through bone marrow transplantation. The goal of the described studies was to determine the hematopoietic cell type responsible for maintaining islets and the associated mechanism of this protection. RESEARCH DESIGN AND METHODS: Mouse models of acute and chronic pancreatitis, together with mice genetically deficient for macrophage production, were used to determine roles for macrophages in islet angiogenesis and maintenance. RESULTS: We demonstrate that macrophages are essential for preventing endocrine cell loss and diabetes. Macrophages expressing matrix metalloproteinase-9 migrate to the deteriorating pancreas. E2f1/E2f2 mutant mice transplanted with wild-type, but not macrophage-deficient colony stimulating factor 1 receptor mutant (Csf1r(-/-)), bone marrow exhibit increased angiogenesis and proliferation within islets, coinciding with increased islet mass. A similar macrophage dependency for islet and islet vasculature maintenance is observed during caerulein-induced pancreatitis. CONCLUSIONS: These findings demonstrate that macrophages promote islet angiogenesis and protect against islet loss during exocrine degeneration, could explain why most patients with chronic pancreatitis develop diabetes, and suggest an avenue for preventing pancreatitis-associated diabetes.


Subject(s)
Bone Marrow Transplantation , Diabetes Mellitus/prevention & control , Islets of Langerhans/blood supply , Macrophages/physiology , Animals , Diabetes Mellitus/pathology , E2F1 Transcription Factor/deficiency , E2F1 Transcription Factor/genetics , E2F2 Transcription Factor/deficiency , E2F2 Transcription Factor/genetics , Mice , Mice, Inbred BALB C , Mice, Knockout , Oligonucleotide Array Sequence Analysis , Pancreas/pathology , Pancreatitis/genetics , Pancreatitis/prevention & control , Pancreatitis, Acute Necrotizing/genetics , Pancreatitis, Acute Necrotizing/prevention & control , Pancreatitis, Chronic/genetics , Pancreatitis, Chronic/prevention & control
3.
J Bone Miner Res ; 19(9): 1441-51, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15312244

ABSTRACT

UNLABELLED: Studies of the influence of the osteoclast on bone development, in particular on mineralization and the formation of the highly organized lamellar architecture of cortical bone by osteoblasts, have not been reported. We therefore examined the micro- and ultrastructure of the developing bones of osteoclast-deficient CSF-1R-nullizygous mice (Csf1r(-/-) mice). INTRODUCTION: Colony-stimulating factor-1 receptor (CSF-1R)-mediated signaling is critical for osteoclastogenesis. Consequently, the primary defect in osteopetrotic Csf1r(-/-) mice is severe osteoclast deficiency. Csf1r(-/-) mice therefore represent an ideal model system in which to investigate regulation by the osteoclast of osteoblast-mediated bone formation during development. MATERIALS AND METHODS: Bones of developing Csf1r(-/-) mice and their littermate controls were subjected to X-ray analysis, histological examination by light microscopy and transmission electron microscopy, and a three-point bending assay to test their biomechanical strength. Bone mineralization in embryonic and postnatal bones was visualized by double staining with alcian blue and alizarin red. Bone formation by osteoblasts in these mice was also examined by double-calcein labeling and in femoral anlagen transplantation experiments. RESULTS AND CONCLUSIONS: Frequent spontaneous fractures and decreased strength parameters (ultimate load, yield load, and stiffness) in a three-point bending assay showed the biomechanical weakness of long bones in Csf1r(-/-) mice. Histologically, these bones have an expanded epiphyseal chondrocyte region, a poorly formed cortex with disorganized collagen fibrils, and a severely disturbed matrix structure. The mineralization of their bone matrix at secondary sites of ossification is significantly reduced. While individual osteoblasts in Csf1r(-/-) mice have preserved their typical ultrastructure and matrix depositing activity, the layered organization of osteoblasts on the bone-forming surface and the direction of their matrix deposition toward the bone surface have been lost, resulting in their abnormal entrapment by matrix. Moreover, we also found that (1) osteoblasts do not express CSF-1R, (2) the bone defects in Csf1r(-/-) embryos develop later than the development of osteoclasts in normal embryos, and (3) the transplanted Csf1r(-/-) femoral anlagen develop normally in the presence of wildtype osteoclasts. These results suggest that the dramatic bone defects in Csf1r(-/-) mice are caused by a deficiency of the osteoclast-mediated regulation of osteoblasts and that the osteoclast plays an important role in regulating osteoblastic bone formation during development, in particular, in the formation of lamellar bone.


Subject(s)
Bone Matrix/pathology , Bone and Bones/embryology , Bone and Bones/physiopathology , Calcification, Physiologic/physiology , Osteoblasts/pathology , Osteoblasts/physiology , Osteoclasts/pathology , Animals , Biomechanical Phenomena , Bone Matrix/metabolism , Bone and Bones/pathology , Bone and Bones/ultrastructure , Femur/pathology , Femur/physiopathology , Femur/ultrastructure , Male , Mice , Osteoblasts/ultrastructure , Receptors, Colony-Stimulating Factor/deficiency , Receptors, Colony-Stimulating Factor/genetics
4.
Blood ; 103(3): 1114-23, 2004 Feb 01.
Article in English | MEDLINE | ID: mdl-14525772

ABSTRACT

The primary macrophage growth factor, colony-stimulating factor 1 (CSF-1), is expressed as a secreted glycoprotein or proteoglycan found in the circulation or as a biologically active cell surface glycoprotein (csCSF-1). To investigate the in vivo roles of csCSF-1, we created mice that exclusively express csCSF-1, in a normal tissue-specific and developmental manner, by transgenic expression of csCSF-1 in the CSF-1-deficient osteopetrotic (Csf1(op)/Csf1(op)) background. The gross defects of Csf1(op)/Csf1(op) mice, including growth retardation, failure of tooth eruption, and abnormal male and female reproductive functions were corrected. Macrophage densities in perinatal liver, bladder, sublinguinal salivary gland, kidney cortex, dermis, and synovial membrane were completely restored, whereas only partial or no restoration was achieved in adult liver, adrenal gland, kidney medulla, spleen, peritoneal cavity, and intestine. Residual osteopetrosis, significantly delayed trabecular bone resorption in the subepiphyseal region of the long bone, and incomplete correction of the hematologic abnormalities in the peripheral blood, bone marrow, and spleens of CSF-1-deficient mice were also found in mice exclusively expressing csCSF-1. These data suggest that although csCSF-1 alone is able to normalize several aspects of development in Csf1(op)/Csf1(op) mice, it cannot fully restore in vivo CSF-1 function, which requires the presence of the secreted glycoprotein and/or proteoglycan forms.


Subject(s)
Macrophage Colony-Stimulating Factor/deficiency , Macrophage Colony-Stimulating Factor/genetics , Animals , Bone Resorption/genetics , Cell Membrane/metabolism , Female , Gene Expression , Hematopoiesis/genetics , Macrophage Colony-Stimulating Factor/metabolism , Macrophages/metabolism , Macrophages/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , Mice, Transgenic , Odontogenesis/genetics , Osteopetrosis/genetics , Osteopetrosis/metabolism , Osteopetrosis/pathology , Reproduction/genetics
SELECTION OF CITATIONS
SEARCH DETAIL