Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 24(23): 6889-6896, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38739156

ABSTRACT

Thermal conductivity is a critical material property in numerous applications, such as those related to thermoelectric devices and heat dissipation. Effectively modulating thermal conductivity has become a great concern in the field of heat conduction. Here, a quantum modulation strategy is proposed to modulate the thermal conductivity/heat flux by exciting targeted phonons. It shows that the thermal conductivity of graphene can be tailored in the range of 1559 W m-1 K-1 (decreased to 49%) to 4093 W m-1 K-1 (increased to 128%), compared with the intrinsic value of 3189 W m-1 K-1. The effects are also observed for graphene nanoribbons and bulk silicon. The results are obtained through both density functional theory calculations and molecular dynamics simulations. This novel modulation strategy may pave the way for quantum heat conduction.

2.
Nanoscale ; 15(40): 16472-16479, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37791638

ABSTRACT

Thermal transport across inorganic/organic interfaces attracts interest from both academia and industry due to their wide applications in flexible electronics, etc. Here, the interfacial thermal conductance of inorganic/organic interfaces consisting of silicon and polyvinylidene fluoride is systematically investigated using molecular dynamics simulations. Interestingly, it is demonstrated that a modified silicon surface with hydroxyl groups can drastically enhance the conductance by 698%. These results are elucidated based on interfacial couplings and lattice dynamics insights. This study not only provides feasible strategies to effectively modulate the interfacial thermal conductance of inorganic/organic interfaces but also deepens the understanding of the fundamental physics underlying phonon transport across interfaces.

SELECTION OF CITATIONS
SEARCH DETAIL