Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 942: 173808, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38848912

ABSTRACT

High concentrations of microplastic (MP) particles have been reported in the Arctic Ocean. However, studies on the high-resolution lateral and vertical transport of MPs from the European waters to the Arctic are still scarce. Here, we provide information about the concentrations and compositions of MPs in surface, subsurface, and deeper waters (< 1 m, ∼ 4 m, and 17-1679 m) collected at 18 stations on six transects along the Norwegian Coastal Current (NCC) using an improved Neuston Catamaran, the COntinuos MicroPlastic Automatic Sampling System (COMPASS), and in situ pumps, respectively. FTIR microscopy and spectroscopy were applied to measure MP concentration, polymer composition, and size distribution. Results indicate that the concentrations of small microplastics (SMPs, <300 µm) varied considerably (0-1240 MP m-3) within the water column, with significantly higher concentrations in the surface (189 MP m-3) and subsurface (38 MP m-3) waters compared to deeper waters (16 MP m-3). Furthermore, the average concentration of SMPs in surface water samples was four orders of magnitude higher than the abundance of large microplastics (LMPs, >300 µm), and overall, SMPs <50 µm account for >80 % of all detected MPs. However, no statistically significant geographical patterns were observed in SMP concentrations in surface/subsurface seawaters between the six sampling transects, suggesting a relatively homogeneous horizontal distribution of SMPs in the upper ocean within the NCC/Norwegian Atlantic Current (NwAC) interface. The Lagrangian particle dispersal simulation model further enabled us to assess the large-scale transport of MPs from the Northern European waters to the Arctic.

2.
Sci Adv ; 10(4): eadk1033, 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38277456

ABSTRACT

Records of past societies confronted with natural climate change can illuminate social responses to environmental stress and environment-disease connections, especially when locally constrained high-temporal resolution paleoclimate reconstructions are available. We present a temperature and precipitation reconstruction for ~200 BCE to ~600 CE, from a southern Italian marine sedimentary archive-the first high-resolution (~3 years) climate record from the heartland of the Roman Empire, stretching from the so-called Roman Climate Optimum to the Late Antique Little Ice Age. We document phases of instability and cooling from ~100 CE onward but more notably after ~130 CE. Pronounced cold phases between ~160 to 180 CE, ~245 to 275 CE, and after ~530 CE associate with pandemic disease, suggesting that climate stress interacted with social and biological variables. The importance of environment-disease dynamics in past civilizations underscores the need to incorporate health in risk assessments of climate change.


Subject(s)
Climate Change , Pandemics , Italy/epidemiology , Civilization , Temperature
4.
Nat Ecol Evol ; 3(4): 577-581, 2019 04.
Article in English | MEDLINE | ID: mdl-30833757

ABSTRACT

The dawn of animals remains one of the most mysterious milestones in the evolution of life. The fossil lipids 24-isopropylcholestane and 26-methylstigmastane are considered diagnostic for demosponges-arguably the oldest group of living animals. The widespread occurrence and high relative abundance of these biomarkers in Ediacaran sediments from 635-541 million years (Myr) ago have been viewed as evidence for the rise of animals to ecological importance approximately 100 Myr before their rapid Cambrian radiation. Here we show that the biosynthesis of 24-isopropylcholestane and 26-methylstigmastane precursors is common among early-branching unicellular Rhizaria-heterotrophic protists that play an important role in trophic cycling and carbon export in the modern ocean. Negating these hydrocarbons as sponge biomarkers, our study places the oldest evidence for animals closer to the Cambrian Explosion. Cambrian silica hexactine spicules that are approximately 535 Myr old now represent the oldest diagnostic sponge remains, whereas approximately 558-Myr-old Dickinsonia and Kimberella (Ediacara biota) provide the most reliable evidence for the emergence of animals. The proliferation of predatory protists may have been responsible for much of the ecological changes during the late Neoproterozoic, including the rise of algae, the establishment of complex trophic relationships and the oxygenation of shallow-water habitats required for the subsequent ascent of macroscopic animals.


Subject(s)
Porifera , Rhizaria , Sterols , Animals , Biomarkers , Phylogeny
5.
J Phycol ; 50(2): 254-66, 2014 Apr.
Article in English | MEDLINE | ID: mdl-26988183

ABSTRACT

Dinoflagellates constitute a large proportion of the planktonic biomass from marine to freshwater environments. Some species produce a preservable organic-walled resting cyst (dinocyst) during the sexual phase of their life cycle that is an important link between the organisms, the environment in which their parent motile theca grew, and the sedimentary record. Despite their abundance and widespread usage as proxy indicators for environmental conditions, there is a lack of knowledge regarding the dinocyst wall chemical composition. It is likely that numerous factors, including phylogeny and life strategy, determine the cyst wall chemistry. However, the extent to which this composition varies based on inherent (phylogenetic) or variable (ecological) factors has not been studied. To address this, we used micro-Fourier transform infrared spectroscopy to analyze nine cyst species produced by either phototrophic or heterotrophic dinoflagellates from the extant orders Gonyaulacales, Gymnodiniales, and Peridiniales. Based on the presence of characteristic functional groups, two significantly different cyst wall compositions are observed that correspond to the dinoflagellate's nutritional strategy. The dinocyst wall compositions analyzed appeared carbohydrate-based, but the cyst wall produced by phototrophic dinoflagellates suggested a cellulose-like glucan, while heterotrophic forms produced a nitrogen-rich glycan. This constitutes the first empirical evidence nutritional strategy is related to different dinocyst wall chemistries. Our results indicated phylogeny was less important for predicting composition than the nutritional strategy of the dinoflagellate, suggesting potential for cyst wall chemistry to infer past nutritional strategies of extinct taxa preserved in the sedimentary record.

6.
Mar Pollut Bull ; 64(1): 114-132, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22118910

ABSTRACT

To obtain insight into the natural and/or human-induced changes in the trophic state of the distal portion of the Po River discharge plume over the last two centuries, high temporal resolution dinoflagellate cyst records were established at three sites. Cyst production rates appear to reflect the natural variability in the river's discharge, whereas cyst associations reflect the trophic state of the upper waters, which in turn can be related to agricultural development. The increased abundances of Lingulodinium machaerophorum and Stelladinium stellatum found as early as 1890 and 1920 correspond to the beginning of the industrial revolution in Italy and the first chemical production and dispersion of ammonia throughout Europe. After 1955, the increased abundances of these species and of Polykrikos schwartzii, Brigantedinium spp. and Pentapharsodinium dalei correspond to agriculturally induced alterations of the hypertrophic conditions. A slight improvement in water quality can be observed from 1987 onward.


Subject(s)
Dinoflagellida/growth & development , Environmental Monitoring , Rivers/chemistry , Water Pollution/statistics & numerical data , Dinoflagellida/classification , Dinoflagellida/isolation & purification , Food Chain , Humans , Italy
SELECTION OF CITATIONS
SEARCH DETAIL
...