Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Mol Cancer Ther ; 22(9): 1073-1086, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37365121

ABSTRACT

Targeted alpha therapies (TAT) are an innovative class of therapies for cancer treatment. The unique mode-of-action of TATs is the induction of deleterious DNA double-strand breaks. Difficult-to-treat cancers, such as gynecologic cancers upregulating the chemoresistance P-glycoprotein (p-gp) and overexpressing the membrane protein mesothelin (MSLN), are promising targets for TATs. Here, based on the previous encouraging findings with monotherapy, we investigated the efficacy of the mesothelin-targeted thorium-227 conjugate (MSLN-TTC) both as monotherapy and in combination with chemotherapies and antiangiogenic compounds in ovarian and cervical cancer models expressing p-gp. MSLN-TTC monotherapy showed equal cytotoxicity in vitro in p-gp-positive and -negative cancer cells, while chemotherapeutics dramatically lost activity on p-gp-positive cancer cells. In vivo, MSLN-TTC exhibited dose-dependent tumor growth inhibition with treatment/control ratios of 0.03-0.44 in various xenograft models irrespective of p-gp expression status. Furthermore, MSLN-TTC was more efficacious in p-gp-expressing tumors than chemotherapeutics. In the MSLN-expressing ST206B ovarian cancer patient-derived xenograft model, MSLN-TTC accumulated specifically in the tumor, which combined with pegylated liposomal doxorubicin (Doxil), docetaxel, bevacizumab, or regorafenib treatment induced additive-to-synergistic antitumor efficacy and substantially increased response rates compared with respective monotherapies. The combination treatments were well tolerated and only transient decreases in white and red blood cells were observed. In summary, we demonstrate that MSLN-TTC treatment shows efficacy in p-gp-expressing models of chemoresistance and has combination potential with chemo- and antiangiogenic therapies.


Subject(s)
Mesothelin , Humans , Female , GPI-Linked Proteins , Cell Line, Tumor , Drug Resistance
3.
Eur J Med Res ; 28(1): 147, 2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37013652

ABSTRACT

BACKGROUND: Regorafenib was previously shown to reduce tumor-associated macrophages and potently inhibit colony-stimulating factor 1 receptor (CSF1R), also known as CD115, in biochemical assays. The CSF1R signaling pathway is essential in the biology of the mononuclear/phagocyte system, which can promote the development of cancer. METHODS: A deeper investigation of regorafenib's effects on CSF1R signaling was performed using preclinical in vitro and in vivo studies with syngeneic CT26 and MC38 mouse models of colorectal cancer. Peripheral blood and tumor tissue were analyzed mechanistically by flow cytometry using antibodies against CD115/CSF1R and F4/80 and by ELISA for chemokine (C-C motif) ligand 2 (CCL2) levels. These read-outs were correlated with drug levels for the detection of pharmacokinetic/pharmacodynamic relationships. RESULTS: Potent inhibition of CSF1R by regorafenib and its metabolites M-2, M-4, and M-5 was confirmed in vitro in RAW264.7 macrophages. The dose-dependent growth inhibition of subcutaneous CT26 tumors by regorafenib was associated with a significant reduction in both the number of CD115hi monocytes in peripheral blood and the number of selective subpopulations of intratumoral F4/80hi tumor-associated macrophages. CCL2 levels were not affected by regorafenib in blood but increased in tumor tissue, which may contribute to drug resistance and prevent complete tumor remission. An inverse relationship between regorafenib concentration and the number of CD115hi monocytes and CCL2 levels was observed in peripheral blood, supporting the mechanistic involvement of regorafenib. CONCLUSIONS: These findings may be clinically useful in optimizing drug dosing using blood-based pharmacodynamic markers and in identifying resistance mechanisms and ways to overcome them by appropriate drug combinations.


Subject(s)
Colorectal Neoplasms , Macrophages , Mice , Animals , Monocytes , Pyridines/pharmacology , Pyridines/therapeutic use , Pyridines/metabolism , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism
4.
Oncoimmunology ; 11(1): 2008110, 2022.
Article in English | MEDLINE | ID: mdl-35141051

ABSTRACT

Carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6), a cell surface receptor, is expressed on normal epithelial tissue and highly expressed in cancers of high unmet medical need, such as non-small cell lung, pancreatic, and colorectal cancer. CEACAM receptors undergo homo- and heterophilic interactions thereby regulating normal tissue homeostasis and angiogenesis, and in cancer, tumor invasion and metastasis. CEACAM6 expression on malignant plasma cells inhibits antitumor activity of T cells, and we hypothesize a similar function on epithelial cancer cells. The interactions between CEACAM6 and its suggested partner CEACAM1 on T cells were studied. A humanized CEACAM6-blocking antibody, BAY 1834942, was developed and characterized for its immunomodulating effects in co-culture experiments with T cells and solid cancer cells and in comparison to antibodies targeting the immune checkpoints programmed cell death protein 1 (PD-1), programmed death-ligand 1 (PD-L1), and T cell immunoglobulin mucin-3 (TIM-3). The immunosuppressive activity of CEACAM6 was mediated by binding to CEACAM1 expressed by activated tumor-specific T cells. BAY 1834942 increased cytokine secretion by T cells and T cell-mediated killing of cancer cells. The in vitro efficacy of BAY 1834942 correlated with the degree of CEACAM6 expression on cancer cells, suggesting potential in guiding patient selection. BAY 1834942 was equally or more efficacious compared to blockade of PD-L1, and at least an additive efficacy was observed in combination with anti-PD-1 or anti-TIM-3 antibodies, suggesting an efficacy independent of the PD-1/PD-L1 axis. In summary, CEACAM6 blockade by BAY 1834942 reactivates the antitumor response of T cells. This warrants clinical evaluation.


Subject(s)
Antigens, CD , Neoplasms , Programmed Cell Death 1 Receptor , Antigens, CD/immunology , B7-H1 Antigen/immunology , Cell Adhesion Molecules/immunology , GPI-Linked Proteins/immunology , Humans , Neoplasms/immunology , Programmed Cell Death 1 Receptor/immunology , T-Lymphocytes
5.
J Exp Clin Cancer Res ; 40(1): 288, 2021 Sep 13.
Article in English | MEDLINE | ID: mdl-34517894

ABSTRACT

BACKGROUND: Patients with advanced colorectal cancer (CRC) have a poor prognosis. Combinations of immunotherapies and anti-angiogenic agents are currently being evaluated in clinical trials. In this study, the multikinase inhibitor regorafenib (REG) was combined with an anti-programmed cell death protein 1 (aPD1) antibody in syngeneic murine microsatellite-stable (MSS) CT26 and hypermutated MC38 colon cancer models to gain mechanistic insights into potential drug synergism. METHODS: Growth and progression of orthotopic CT26 and subcutaneous MC38 colon cancers were studied under treatment with varying doses of REG and aPD1 alone or in combination. Sustained effects were studied after treatment discontinuation. Changes in the tumor microenvironment were assessed by dynamic contrast-enhanced MRI, and histological and molecular analyses. RESULTS: In both models, REG and aPD1 combination therapy significantly improved anti-tumor activity compared with single agents. However, in the CT26 model, the additive benefit of aPD1 only became apparent after treatment cessation. The combination treatment efficiently prevented tumor regrowth and completely suppressed liver metastasis, whereas the anti-tumorigenic effects of REG alone were abrogated soon after drug discontinuation. During treatment, REG significantly reduced the infiltration of immunosuppressive macrophages and regulatory T (Treg) cells into the tumor microenvironment. aPD1 significantly enhanced intratumoral IFNγ levels. The drugs synergized to induce sustained M1 polarization and durable reduction of Treg cells, which can explain the sustained tumor suppression. CONCLUSIONS: This study highlights the synergistic immunomodulatory effects of REG and aPD1 combination therapy in mediating a sustained inhibition of colon cancer regrowth, strongly warranting clinical evaluation in CRC, including MSS tumors.


Subject(s)
Colorectal Neoplasms/drug therapy , Immunotherapy/methods , Phenylurea Compounds/therapeutic use , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Pyridines/therapeutic use , Animals , Cell Line, Tumor , Drug Synergism , Humans , Mice , Phenylurea Compounds/pharmacology , Pyridines/pharmacology
6.
J Immunother Cancer ; 8(2)2020 11.
Article in English | MEDLINE | ID: mdl-33234602

ABSTRACT

BACKGROUND AND PURPOSE: Combining inhibitors of vascular endothelial growth factor and the programmed cell death protein 1 (PD1) pathway has shown efficacy in multiple cancers, but the disease-specific and agent-specific mechanisms of benefit remain unclear. We examined the efficacy and defined the mechanisms of benefit when combining regorafenib (a multikinase antivascular endothelial growth factor receptor inhibitor) with PD1 blockade in murine hepatocellular carcinoma (HCC) models. BASIC PROCEDURES: We used orthotopic models of HCC in mice with liver damage to test the effects of regorafenib-dosed orally at 5, 10 or 20 mg/kg daily-combined with anti-PD1 antibodies (10 mg/kg intraperitoneally thrice weekly). We evaluated the effects of therapy on tumor vasculature and immune microenvironment using immunofluorescence, flow cytometry, RNA-sequencing, ELISA and pharmacokinetic/pharmacodynamic studies in mice and in tissue and blood samples from patients with cancer. MAIN FINDINGS: Regorafenib/anti-PD1 combination therapy increased survival compared with regofarenib or anti-PD1 alone in a regorafenib dose-dependent manner. Combination therapy increased regorafenib uptake into the tumor tissues by normalizing the HCC vasculature and increasing CD8 T-cell infiltration and activation at an intermediate regorafenib dose. The efficacy of regorafenib/anti-PD1 therapy was compromised in mice lacking functional T cells (Rag1-deficient mice). Regorafenib treatment increased the transcription and protein expression of CXCL10-a ligand for CXCR3 expressed on tumor-infiltrating lymphocytes-in murine HCC and in blood of patients with HCC. Using Cxcr3-deficient mice, we demonstrate that CXCR3 mediated the increased intratumoral CD8 T-cell infiltration and the added survival benefit when regorafenib was combined with anti-PD1 therapy. PRINCIPAL CONCLUSIONS: Judicious regorafenib/anti-PD1 combination therapy can inhibit tumor growth and increase survival by normalizing tumor vasculature and increasing intratumoral CXCR3+CD8 T-cell infiltration through elevated CXCL10 expression in HCC cells.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , CD8-Positive T-Lymphocytes/drug effects , Carcinoma, Hepatocellular/drug therapy , Chemokine CXCL10/metabolism , Liver Neoplasms/drug therapy , Phenylurea Compounds/therapeutic use , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Pyridines/therapeutic use , Animals , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Disease Models, Animal , Humans , Liver Neoplasms/pathology , Mice , Phenylurea Compounds/pharmacology , Pyridines/pharmacology
7.
Cancer Med ; 9(7): 2535-2550, 2020 04.
Article in English | MEDLINE | ID: mdl-31994315

ABSTRACT

Although early detection and treatment of colorectal cancer (CRC) have improved, it remains a significant health-care problem with high morbidity and mortality. Data indicate that long-term intake of low-dose aspirin reduces the risk of CRC; however, the mechanisms underlying this chemopreventive effect are still unclear. Different mouse models for inflammation-associated, sporadic, and hereditary CRC were applied to assess the efficacy and mechanism of low-dose aspirin on tumor prevention. An initial dosing study performed in healthy mice indicates that aspirin at a dose of 25 mg/kg/d has a similar pharmacodynamic effect as low-dose aspirin treatment in human subjects (100 mg/d). Chronic low-dose aspirin treatment suppresses colitis-associated and to a lesser extent spontaneous tumorigenesis in mice. Aspirin's antitumor effect is most pronounced in a preventive approach when aspirin administration starts before the tumor-initiating genotoxic event and continues for the duration of the experiment. These effects are not associated with alterations in cell proliferation, apoptosis, or activation of signaling pathways involved in CRC. Aspirin-induced reduction in tumor burden is accompanied by inhibition of thromboxane B2 formation, indicating reduced platelet activation. Aspirin treatment also results in decreased colonic prostaglandin E2 formation and tumor angiogenesis. With respect to colitis-triggered tumorigenesis, aspirin administration is associated with a reduction in inflammatory activity in the colon, as indicated by decreased levels of pro-inflammatory mediators, and tumor-associated iNOS-positive macrophages. Our results suggest that low-dose aspirin represents an effective antitumor agent in the context of colon tumorigenesis primarily due to its well-established cyclooxygenase inhibition effects.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Aspirin/pharmacology , Cell Transformation, Neoplastic/drug effects , Colitis-Associated Neoplasms/drug therapy , Colorectal Neoplasms/drug therapy , Intestinal Neoplasms/drug therapy , Animals , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Apoptosis , Aspirin/administration & dosage , Azoxymethane/toxicity , Carcinogens/toxicity , Cell Proliferation , Cell Transformation, Neoplastic/pathology , Colitis-Associated Neoplasms/chemically induced , Colitis-Associated Neoplasms/pathology , Colorectal Neoplasms/chemically induced , Colorectal Neoplasms/pathology , Dextran Sulfate/toxicity , Dose-Response Relationship, Drug , Female , Intestinal Neoplasms/chemically induced , Intestinal Neoplasms/pathology , Male , Mice , Mice, Inbred C57BL , Tumor Cells, Cultured
8.
Int J Cancer ; 145(5): 1346-1357, 2019 09 01.
Article in English | MEDLINE | ID: mdl-30807645

ABSTRACT

Aberrant activation in fibroblast growth factor signaling has been implicated in the development of various cancers, including squamous cell lung cancer, squamous cell head and neck carcinoma, colorectal and bladder cancer. Thus, fibroblast growth factor receptors (FGFRs) present promising targets for novel cancer therapeutics. Here, we evaluated the activity of a novel pan-FGFR inhibitor, rogaratinib, in biochemical, cellular and in vivo efficacy studies in a variety of preclinical cancer models. In vitro kinase activity assays demonstrate that rogaratinib potently and selectively inhibits the activity of FGFRs 1, 2, 3 and 4. In line with this, rogaratinib reduced proliferation in FGFR-addicted cancer cell lines of various cancer types including lung, breast, colon and bladder cancer. FGFR and ERK phosphorylation interruption by rogaratinib treatment in several FGFR-amplified cell lines suggests that the anti-proliferative effects are mediated by FGFR/ERK pathway inhibition. Furthermore, rogaratinib exhibited strong in vivo efficacy in several cell line- and patient-derived xenograft models characterized by FGFR overexpression. The observed efficacy of rogaratinib strongly correlated with FGFR mRNA expression levels. These promising results warrant further development of rogaratinib and clinical trials are currently ongoing (ClinicalTrials.gov Identifiers: NCT01976741, NCT03410693, NCT03473756).


Subject(s)
Breast Neoplasms/drug therapy , Neoplasms/drug therapy , Piperazines/pharmacology , Pyrroles/pharmacology , Receptors, Fibroblast Growth Factor/antagonists & inhibitors , Thiophenes/pharmacology , Animals , Antineoplastic Agents/pharmacology , Breast Neoplasms/metabolism , Cell Line, Tumor , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , Drug Screening Assays, Antitumor , Female , Human Umbilical Vein Endothelial Cells , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Mice , Mice, Inbred BALB C , Mice, Nude , Neoplasms/metabolism , Phosphorylation/drug effects , Random Allocation , Rats , Xenograft Model Antitumor Assays
9.
Oncotarget ; 8(63): 107096-107108, 2017 Dec 05.
Article in English | MEDLINE | ID: mdl-29291014

ABSTRACT

The purpose of this study was to investigate the antitumor activity of regorafenib and sorafenib in preclinical models of HCC and to assess their mechanism of action by associated changes in protein expression in a HCC-PDX mouse model. Both drugs were administered orally once daily at 10 mg/kg (regorafenib) or 30 mg/kg (sorafenib), which recapitulate the human exposure at the maximally tolerated dose in mice. In a H129 hepatoma model, survival times differed significantly between regorafenib versus vehicle (p=0.0269; median survival times 36 vs 27 days), but not between sorafenib versus vehicle (p=0.1961; 33 vs 28 days). Effects on tumor growth were assessed in 10 patient-derived HCC xenograft (HCC-PDX) models. Significant tumor growth inhibition was observed in 8/10 models with regorafenib and 7/10 with sorafenib; in four models, superior response was observed with regorafenib versus sorafenib which was deemed not to be due to lower sorafenib exposure. Bead-based multiplex western blot analysis was performed with total protein lysates from drug- and vehicle-treated HCC-PDX xenografts. Protein expression was substantially different in regorafenib- and sorafenib-treated samples compared with vehicle. The pattern of upregulated proteins was similar with both drugs and indicates an activated RAF/MEK/ERK pathway, but more proteins were downregulated with sorafenib versus regorafenib. Overall, both regorafenib and sorafenib were effective in mouse models of HCC, although several cases showed better regorafenib activity which may explain the observed efficacy of regorafenib in sorafenib-refractory patients.

10.
Cancer Med ; 5(11): 3176-3185, 2016 11.
Article in English | MEDLINE | ID: mdl-27734608

ABSTRACT

Regorafenib is an orally administered inhibitor of protein kinases involved in tumor angiogenesis, oncogenesis, and maintenance of the tumor microenvironment. Phase III studies showed that regorafenib has efficacy in patients with advanced gastrointestinal stromal tumors or treatment-refractory metastatic colorectal cancer. In clinical studies, steady-state exposure to the M-2 and M-5 metabolites of regorafenib was similar to that of the parent drug; however, the contribution of these metabolites to the overall observed clinical activity of regorafenib cannot be investigated in clinical trials. Therefore, we assessed the pharmacokinetics and pharmacodynamics of regorafenib, M-2, and M-5 in vitro and in murine xenograft models. M-2 and M-5 showed similar kinase inhibition profiles and comparable potency to regorafenib in a competitive binding assay. Inhibition of key target kinases by all three compounds was confirmed in cell-based assays. In murine xenograft models, oral regorafenib, M-2, and M-5 significantly inhibited tumor growth versus controls. Total peak plasma drug concentrations and exposure to M-2 and M-5 in mice after repeated oral dosing with regorafenib 10 mg/kg/day were comparable to those in humans. In vitro studies showed high binding of regorafenib, M-2, and M-5 to plasma proteins, with unbound fractions of ~0.6%, ~0.9%, and ~0.4%, respectively, in murine plasma and ~0.5%, ~0.2%, and ~0.05%, respectively, in human plasma. Estimated free plasma concentrations of regorafenib and M-2, but not M-5, exceeded the IC50 at human and murine VEGFR2, suggesting that regorafenib and M-2 are the primary contributors to the pharmacologic activity of regorafenib in vivo.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Antineoplastic Agents/pharmacology , Phenylurea Compounds/pharmacology , Protein Kinase Inhibitors/pharmacology , Pyridines/pharmacology , Angiogenesis Inhibitors/pharmacokinetics , Animals , Antineoplastic Agents/pharmacokinetics , Cell Line, Tumor , Disease Models, Animal , Drug Evaluation, Preclinical , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Humans , Metabolome , Metabolomics/methods , Mice , Phenylurea Compounds/pharmacokinetics , Protein Binding , Protein Interaction Mapping , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinases/metabolism , Pyridines/pharmacokinetics , Xenograft Model Antitumor Assays
11.
PLoS One ; 10(11): e0142612, 2015.
Article in English | MEDLINE | ID: mdl-26599335

ABSTRACT

The multikinase inhibitor regorafenib (BAY 73-4506) exerts both anti-angiogenic and anti-tumorigenic activity in adult solid malignancies mainly advanced colorectal cancer and gastrointestinal stromal tumors. We intended to explore preclinically the potential of regorafenib against solid pediatric malignancies alone and in combination with anticancer agents to guide the pediatric development plan. In vitro effects on cell proliferation were screened against 33 solid tumor cell lines of the Innovative Therapies for Children with Cancer (ITCC) panel covering five pediatric solid malignancies. Regorafenib inhibited cell proliferation with a mean half maximal growth inhibition of 12.5 µmol/L (range 0.7 µmol/L to 28 µmol/L). In vivo, regorafenib was evaluated alone at 10 or 30 mg/kg/d or in combination with radiation, irinotecan or the mitogen-activated protein kinase kinase (MEK) inhibitor refametinib against various tumor types, including patient-derived brain tumor models with an amplified platelet-derived growth factor receptor A (PDGFRA) gene. Regorafenib alone significantly inhibited tumor growth in all xenografts derived from nervous system and connective tissue tumors. Enhanced effects were observed when regorafenib was combined with irradiation and irinotecan against PDGFRA amplified IGRG93 glioma and IGRM57 medulloblastoma respectively, resulting in 100% tumor regressions. Antitumor activity was associated with decreased tumor vascularization, inhibition of PDGFR signaling, and induction of apoptotic cell death. Our work demonstrates that regorafenib exhibits significant antitumor activity in a wide spectrum of preclinical pediatric models through inhibition of angiogenesis and induction of apoptosis. Furthermore, radio- and chemosensitizing effects were observed with DNA damaging agents in PDGFR amplified tumors.


Subject(s)
Antineoplastic Agents/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Neoplasms/drug therapy , Phenylurea Compounds/therapeutic use , Pyridines/therapeutic use , Adolescent , Adult , Aged , Animals , Apoptosis/drug effects , Camptothecin/analogs & derivatives , Camptothecin/therapeutic use , Cell Line, Tumor , Cell Proliferation , Child , Drug Screening Assays, Antitumor , Female , Humans , In Situ Hybridization, Fluorescence , Irinotecan , MAP Kinase Signaling System , Male , Mice , Neoplasm Transplantation , Neoplasms/metabolism , Neovascularization, Pathologic/drug therapy
12.
J Exp Clin Cancer Res ; 34: 132, 2015 Oct 29.
Article in English | MEDLINE | ID: mdl-26514182

ABSTRACT

BACKGROUND: Unresectable gastric cancer is associated with poor outcomes, with few treatment options available after failure of cytotoxic chemotherapy. Clinical trials of targeted therapies have generally shown no survival benefit in gastric cancer, with the exceptions of the antibodies ramucirumab (anti-VEGFR2) and trastuzumab (anti-HER2/neu). Given the efficacy of the multikinase inhibitor regorafenib in other gastrointestinal tumors, we investigated its potential in gastric cancer. METHODS: The antitumor activity of oral regorafenib was assessed in eight murine patient-derived gastric cancer xenograft models. Dose-response experiments assessed the efficacy and tolerability of oral regorafenib 5, 10, and 15 mg/kg/day in two models, with 10 mg/kg/day selected for further investigation in all eight models. Tumor weight and volume was monitored during treatment; tumor cell proliferation, angiogenesis, apoptosis, and intracellular signaling were assessed using immunohistochemistry and Western blotting of total tumor lysates at the end of treatment. RESULTS: Regorafenib showed dose-dependent inhibition of tumor growth and was well tolerated, with no significant decreases in bodyweight or evident toxicity. Regorafenib 10 mg/kg/day significantly inhibited tumor growth in all eight models (72 to 96 %; all p < 0.01), resulting in reduced tumor weight versus vehicle controls. Regorafenib reduced tumor angiogenesis 3- to 11-fold versus controls in all models (all p < 0.05), reduced tumor proliferation 2- to 5-fold in six of the eight models (all p < 0.05), and induced apoptosis in seven models. CONCLUSION: Regorafenib was effective in patient-derived models of gastric cancer of different histological subtypes, with inhibition of tumor growth, angiogenesis, and tumor-cell proliferation observed in almost all models. These findings are consistent with the observed activity of regorafenib in preclinical models of other gastrointestinal tumors, and support further clinical investigation in gastric cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Phenylurea Compounds/pharmacology , Protein Kinase Inhibitors/pharmacology , Pyridines/pharmacology , Stomach Neoplasms/pathology , Angiogenesis Inhibitors/administration & dosage , Angiogenesis Inhibitors/pharmacology , Animals , Antineoplastic Agents/administration & dosage , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Disease Models, Animal , Dose-Response Relationship, Drug , Humans , Mice , Neovascularization, Pathologic/drug therapy , Phenylurea Compounds/administration & dosage , Protein Kinase Inhibitors/administration & dosage , Pyridines/administration & dosage , Stomach Neoplasms/drug therapy , Tumor Burden/drug effects , Xenograft Model Antitumor Assays
13.
Int J Cancer ; 135(6): 1487-96, 2014 Sep 15.
Article in English | MEDLINE | ID: mdl-24347491

ABSTRACT

Regorafenib, a novel multikinase inhibitor, has recently demonstrated overall survival benefits in metastatic colorectal cancer (CRC) patients. Our study aimed to gain further insight into the molecular mechanisms of regorafenib and to assess its potential in combination therapy. Regorafenib was tested alone and in combination with irinotecan in patient-derived (PD) CRC models and a murine CRC liver metastasis model. Mechanism of action was investigated using in vitro functional assays, immunohistochemistry and correlation with CRC-related oncogenes. Regorafenib demonstrated significant inhibition of growth-factor-mediated vascular endothelial growth factor receptor (VEGFR) 2 and VEGFR3 autophosphorylation, and intracellular VEGFR3 signaling in human umbilical vascular endothelial cells (HuVECs) and lymphatic endothelial cells (LECs), and also blocked migration of LECs. Furthermore, regorafenib inhibited proliferation in 19 of 25 human CRC cell lines and markedly slowed tumor growth in five of seven PD xenograft models. Combination of regorafenib with irinotecan significantly delayed tumor growth after extended treatment in four xenograft models. Reduced CD31 staining indicates that the antiangiogenic effects of regorafenib contribute to its antitumor activity. Finally, regorafenib significantly delayed disease progression in a murine CRC liver metastasis model by inhibiting the growth of established liver metastases and preventing the formation of new metastases in other organs. In addition, our results suggest that regorafenib displays antimetastatic activity, which may contribute to its efficacy in patients with metastatic CRC. Combination of regorafenib and irinotecan demonstrated an increased antitumor effect and could provide a future treatment option for CRC patients.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Colorectal Neoplasms/drug therapy , Phenylurea Compounds/pharmacology , Pyridines/pharmacology , Animals , Camptothecin/administration & dosage , Camptothecin/analogs & derivatives , Cell Growth Processes/drug effects , Cell Line, Tumor , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Drug Resistance, Neoplasm , Female , Humans , Irinotecan , Liver Neoplasms, Experimental/drug therapy , Liver Neoplasms, Experimental/metabolism , Liver Neoplasms, Experimental/secondary , Male , Mice , Mice, Inbred C57BL , Mice, Nude , Neoplasm Metastasis , Organoplatinum Compounds/pharmacology , Oxaliplatin , Phenylurea Compounds/administration & dosage , Pyridines/administration & dosage , Random Allocation , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Vascular Endothelial Growth Factor Receptor-2/metabolism , Vascular Endothelial Growth Factor Receptor-3/antagonists & inhibitors , Vascular Endothelial Growth Factor Receptor-3/metabolism , Xenograft Model Antitumor Assays
14.
Mol Cancer Ther ; 12(7): 1322-31, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23619301

ABSTRACT

The combination of target-specific drugs like bevacizumab with chemotherapeutics has improved treatment efficacy in advanced colorectal cancer (CRC). However, the clinical prognosis of metastatic CRCs is still poor, and novel drugs are currently assessed with respect to their efficacies in patients with CRCs. In a phase III study, the multikinase inhibitor regorafenib (BAY 73-4506) has recently been shown to prolong survival of patients with CRCs after standard therapies failed. In the present study, the activity of regorafenib was investigated in comparison with the angiogenesis inhibitor DC101 in the highly aggressive, murine CT26 metastatic colon cancer model. While a treatment for 10 days with DC101 given at a dose of 34 mg/kg every third day significantly delayed tumor growth compared with vehicle-treated animals, regorafenib completely suppressed tumor growth at a daily oral dose of 30 mg/kg. Regorafenib also induced a stronger reduction in tumor vascularization, as longitudinally assessed in vivo by dynamic contrast-enhanced MRI (DCE-MRI) and confirmed by immunohistochemistry. In addition, regorafenib inhibited the angiogenic activity more strongly and induced a three times higher apoptosis rate than DC101. Even more important, regorafenib completely prevented the formation of liver metastases, whereas in DC101-treated animals, the metastatic rate was only reduced by 33% compared with the vehicle group. In addition, regorafenib significantly reduced the amount of infiltrating macrophages. These data show that the multikinase inhibitor regorafenib exerts strong antiangiogenic, antitumorigenic, and even antimetastatic effects on highly aggressive colon carcinomas indicative for its high potential in the treatment of advanced CRCs.


Subject(s)
Antineoplastic Agents/pharmacology , Colonic Neoplasms/drug therapy , Phenylurea Compounds/pharmacology , Pyridines/pharmacology , Angiogenesis Inhibitors/therapeutic use , Animals , Cell Line, Tumor , Colonic Neoplasms/blood supply , Colonic Neoplasms/pathology , Disease Models, Animal , Female , Longitudinal Studies , Mice , Mice, Inbred BALB C , Mice, Nude , Neoplasm Metastasis , Neovascularization, Pathologic/drug therapy , Random Allocation
15.
Mol Cancer Ther ; 11(12): 2664-73, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23041545

ABSTRACT

For treatment of patients with prostate cancer (PCa), we developed a novel T cell-engaging (BiTE) antibody designated AMG 212 or BAY2010112 that is bispecific for prostate-specific membrane antigen (PSMA) and the CD3 epsilon subunit of the T cell receptor complex. AMG 212/BAY2010112 induced target cell-dependent activation and cytokine release of T cells, and efficiently redirected T cells for lysis of target cells. In addition to Chinese hamster ovary cells stably expressing human or cynomolgus monkey PSMA, T cells redirected by AMG 212/BAY2010112 also lysed human PCa cell lines VCaP, 22Rv1, MDA PCa 2b, C4-2, PC-3-huPSMA, and LnCaP at half maximal BiTE concentrations between 0.1 and 4 ng/mL (1.8-72 pmol/L). No lysis of PSMA-negative human PCa cell lines PC-3 and DU145 was observed. The subcutaneous (s.c.) formation of tumors from PC-3-huPSMA cells in NOD/SCID mice was significantly prevented by once daily intravenous (i.v.) injection of AMG 212/BAY2010112 at a dose level as low as 0.005 mg/kg/d. Rapid tumor shrinkage with complete remissions were observed in NOD/SCID mice bearing established s.c. 22Rv1 xenografts after repeated daily treatment with AMG 212/BAY2010112 by either the i.v. or s.c. route. Of note, 22Rv1 tumors were grown in the absence of human T cells followed by intraperitoneal injection of T cells 3 days before BiTE treatment. No effects on tumor growth were observed in the absence of human T cells or AMG 212/BAY2010112. On the basis of these preclinical results, AMG 212/BAY2010112 appears as a promising new BiTE antibody for the treatment of patients with PSMA-expressing PCa.


Subject(s)
Antibodies, Bispecific/pharmacology , Antigens, Surface/immunology , CD3 Complex/immunology , Glutamate Carboxypeptidase II/immunology , Prostatic Neoplasms/immunology , Prostatic Neoplasms/therapy , Animals , Antibodies, Bispecific/genetics , Antibodies, Bispecific/immunology , CD3 Complex/genetics , CHO Cells , Cricetinae , Cross Reactions , Female , Haplorhini , Humans , Immunization, Passive/methods , Macaca fascicularis , Male , Mice , Mice, Inbred BALB C , Mice, Inbred NOD , Mice, SCID , Prostatic Neoplasms/pathology , Transfection , Xenograft Model Antitumor Assays
16.
Int J Cancer ; 129(1): 245-55, 2011 Jul 01.
Article in English | MEDLINE | ID: mdl-21170960

ABSTRACT

Angiogenesis, a critical driver of tumor development, is controlled by interconnected signaling pathways. Vascular endothelial growth factor receptor (VEGFR) 2 and tyrosine kinase with immunoglobulin and epidermal growth factor homology domain 2 play crucial roles in the biology of normal and tumor vasculature. Regorafenib (BAY 73-4506), a novel oral multikinase inhibitor, potently inhibits these endothelial cell kinases in biochemical and cellular kinase phosphorylation assays. Furthermore, regorafenib inhibits additional angiogenic kinases (VEGFR1/3, platelet-derived growth factor receptor-ß and fibroblast growth factor receptor 1) and the mutant oncogenic kinases KIT, RET and B-RAF. The antiangiogenic effect of regorafenib was demonstrated in vivo by dynamic contrast-enhanced magnetic resonance imaging. Regorafenib administered once orally at 10 mg/kg significantly decreased the extravasation of Gadomer in the vasculature of rat GS9L glioblastoma tumor xenografts. In a daily (qd)×4 dosing study, the pharmacodynamic effects persisted for 48 hr after the last dosing and correlated with tumor growth inhibition (TGI). A significant reduction in tumor microvessel area was observed in a human colorectal xenograft after qd×5 dosing at 10 and 30 mg/kg. Regorafenib exhibited potent dose-dependent TGI in various preclinical human xenograft models in mice, with tumor shrinkages observed in breast MDA-MB-231 and renal 786-O carcinoma models. Pharmacodynamic analyses of the breast model revealed strong reduction in staining of proliferation marker Ki-67 and phosphorylated extracellular regulated kinases 1/2. These data demonstrate that regorafenib is a well-tolerated, orally active multikinase inhibitor with a distinct target profile that may have therapeutic benefit in human malignancies.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Antineoplastic Agents/pharmacology , Enzyme Inhibitors/pharmacology , Phenylurea Compounds/pharmacology , Protein Kinase Inhibitors/pharmacology , Pyridines/pharmacology , Animals , Cell Proliferation/drug effects , Female , Magnetic Resonance Imaging , Mice , Mice, Nude , Phosphorylation , Rats , Rats, Inbred F344
17.
FEBS Lett ; 580(16): 3921-30, 2006 Jul 10.
Article in English | MEDLINE | ID: mdl-16797541

ABSTRACT

F-Box proteins (FBPs) are variable adaptor proteins that earmark protein substrates for ubiquination and destruction by the proteasome. Through their N-terminal F-box motif, they couple specific protein substrates to a catalytic machinery known as SCF (Skp-1/Cul1/F-Box) E3-ubiquitin ligase. Typical FBPs bind the specific substrates in a phosphorylation dependent manner via their C-termini using either leucine rich repeats (LRR) or tryptophan-aspartic acid (WD40) domains for substrate recognition. By using a gene trap strategy that selects for genes induced during programmed cell death, we have isolated the mouse homolog of the hypothetical human F-Box protein 33 (FBX33). Here we identify FBX33 as a component of an SCF E3-ubiquitin ligase that targets the multifunctional regulator Y-box binding protein 1 (YB-1)/dbpB/p50 for polyubiquitination and destruction by the proteasome. By targeting YB-1 for proteasomal degradation, FBX33 negatively interferes with YB-1 mediated functions. In contrast to typical FBPs, FBX33 has no C-terminal LRR or WD40 domains and associates with YB-1 via its N-terminus. The present study confirms the existence of a formerly hypothetical F-Box protein in living cells and describes one of its substrates.


Subject(s)
Apoptosis , Nerve Tissue Proteins/metabolism , Proteasome Endopeptidase Complex/metabolism , Protein Processing, Post-Translational , Transcription Factors/metabolism , Y-Box-Binding Protein 1/metabolism , Amino Acid Sequence , Animals , COS Cells , Cells, Cultured , Chlorocebus aethiops , Humans , Mice , Molecular Sequence Data , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/genetics , Polyubiquitin/metabolism , Protein Binding , Protein Structure, Tertiary , RNA, Messenger/genetics , RNA, Messenger/metabolism , SKP Cullin F-Box Protein Ligases/metabolism , Transcription Factors/chemistry , Transcription Factors/genetics , Transcriptional Activation/genetics
18.
Cancer Gene Ther ; 9(2): 117-25, 2002 Feb.
Article in English | MEDLINE | ID: mdl-11857028

ABSTRACT

We have shown recently that a 15-mer phosphorothioate oligodeoxynucleotide (ODNas750/15) that hybridizes to the (CAG)n polyglutamine region of mRNA encoding human androgen receptor (AR) inhibits the expression of AR in LNCaP prostate cancer cells in vitro. This AR downregulation was accompanied by significant cell growth inhibition and reduced PSA secretion. In the present study we investigated the effects of this antisense AR ODN on prostate tumor growth in vivo using a mouse xenograft model. Via subcutaneously implanted diffusion pumps, either ODNas750/15 or a scrambled control sequence ODNsr750/15 was continuously administered into LNCaP tumor-bearing male nude mice for 7 weeks. Compared with untreated control animals, treatment with ODNas750/15 resulted in significant tumor growth inhibition. Retardation of tumor growth was also significant in castrated mice, whereas the scrambled control ODN did not exert any effects. No side effects such as loss of body weight were observed at any time of treatment. ODN treatment was well tolerated and, in contrast to castration, did not induce shrinkage of mouse prostates. Both AR expression in the tumor and PSA levels in mouse serum correlated with tumor size. However, we failed to demonstrate a correlation between tumor retardation and Ki-67 antigen expression and the number of apoptotic cells, respectively. Testing of antisense-treated LNCaP cells revealed that expression levels of other proteins that contain shorter polyglutamine sequence stretches such as HDAC2, TFIID, and c-jun were not affected. The present study demonstrates that downregulation of AR with antisense ODNas750/15 causes prostate tumor growth inhibition. These results further point out the important role of the AR in prostate tumors and support further testing of AR downregulation for treatment of prostate cancer.


Subject(s)
Oligodeoxyribonucleotides, Antisense/therapeutic use , Peptides/chemistry , Prostatic Neoplasms/therapy , Receptors, Androgen/genetics , Animals , Apoptosis/physiology , Blotting, Western , Cell Division , DNA Primers/chemistry , Down-Regulation , Genetic Therapy , Humans , Immunoenzyme Techniques , In Situ Nick-End Labeling , Ki-67 Antigen/metabolism , Male , Mice , Mice, Nude , Oligodeoxyribonucleotides, Antisense/chemical synthesis , Peptides/metabolism , Prostate-Specific Antigen/metabolism , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , RNA, Messenger/metabolism , Receptors, Androgen/metabolism , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...