Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Opt Express ; 15(3): 1697-1708, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38495726

ABSTRACT

Measuring the size distribution of aerosols typically requires processing a sample, specifically to adjust the particle concentration to an adequate level. Unfortunately, this manipulation can significantly alter the native composition of some aerosols, which can lead to unreliable or even unusable measurements. We demonstrate that coherence-gated dynamic light scattering is suitable to measure the size distribution of native aerosols without the need for sample processing. Another novel aspect of the present work is the first demonstration of these type of localized light-scattering-based measurements in aerial media. Measuring the size distribution reliably in optically dense aerosols is possible thanks to the interferometric amplification of single scattering in an optically isolated, picolitre-sized coherence volume. We carried out proof-of-concept experiments in aerosols from electronic cigarettes, which poses a challenge mainly due to their high concentration, volatility, and hygroscopicity. We generated aerosols using two common moisturizers, propylene glycol and glycerol, and measured their particle size distribution as a function of the burning power. The aerosols generated in the presence of glycerol are more polydisperse and have larger particles with increasing burning power. This unique characterization of native aerosols can provide valuable information for dosimetry and hosting sites in the respiratory system.

2.
Appl Opt ; 60(4): A205-A214, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33690371

ABSTRACT

In this work, the design, construction, and testing of the most cost-effective digital lensless holographic microscope to date are presented. The architecture of digital lensless holographic microscopy (DLHM) is built by means of a 3D-printed setup and utilizing off-the-shelf materials to produce a DLHM microscope costing US$52.82. For the processing of the recorded in-line holograms, an open-source software specifically developed to process this type of recordings is utilized. The presented DLHM setup has all the degrees of freedom needed to achieve different fields of view, levels of spatial resolution, and 2D scanning of the sample. The feasibility of the presented platform is tested by imaging non-bio and bio samples; the resolution test targets, a section of the head of a Drosophila melanogaster fly, red blood cells, and cheek cells are imaged on the built microscope.


Subject(s)
Holography/instrumentation , Microscopy/instrumentation , Animals , Cheek/diagnostic imaging , Cost-Benefit Analysis , Drosophila melanogaster/metabolism , Erythrocytes/metabolism , Head/diagnostic imaging , Holography/methods , Microscopy/methods , Printing, Three-Dimensional
SELECTION OF CITATIONS
SEARCH DETAIL
...