Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 88
Filter
2.
Cell Death Dis ; 13(12): 1055, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36539400

ABSTRACT

Ion channels are non-conventional, druggable oncological targets. The intermediate-conductance calcium-dependent potassium channel (KCa3.1) is highly expressed in the plasma membrane and in the inner mitochondrial membrane (mitoKCa3.1) of various cancer cell lines. The role mitoKCa3.1 plays in cancer cells is still undefined. Here we report the synthesis and characterization of two mitochondria-targeted novel derivatives of a high-affinity KCa3.1 antagonist, TRAM-34, which retain the ability to block channel activity. The effects of these drugs were tested in melanoma, pancreatic ductal adenocarcinoma and breast cancer lines, as well as in vivo in two orthotopic models. We show that the mitochondria-targeted TRAM-34 derivatives induce release of mitochondrial reactive oxygen species, rapid depolarization of the mitochondrial membrane, fragmentation of the mitochondrial network. They trigger cancer cell death with an EC50 in the µM range, depending on channel expression. In contrast, inhibition of the plasma membrane KCa3.1 by membrane-impermeant Maurotoxin is without effect, indicating a specific role of mitoKCa3.1 in determining cell fate. At sub-lethal concentrations, pharmacological targeting of mitoKCa3.1 significantly reduced cancer cell migration by enhancing production of mitochondrial reactive oxygen species and nuclear factor-κB (NF-κB) activation, and by downregulating expression of Bcl-2 Nineteen kD-Interacting Protein (BNIP-3) and of Rho GTPase CDC-42. This signaling cascade finally leads to cytoskeletal reorganization and impaired migration. Overexpression of BNIP-3 or pharmacological modulation of NF-κB and CDC-42 prevented the migration-reducing effect of mitoTRAM-34. In orthotopic models of melanoma and pancreatic ductal adenocarcinoma, the tumors at sacrifice were 60% smaller in treated versus untreated animals. Metastasis of melanoma cells to lymph nodes was also drastically reduced. No signs of toxicity were observed. In summary, our results identify mitochondrial KCa3.1 as an unexpected player in cancer cell migration and show that its pharmacological targeting is efficient against both tumor growth and metastatic spread in vivo.


Subject(s)
Carcinoma, Pancreatic Ductal , Melanoma , Pancreatic Neoplasms , Potassium Channels, Calcium-Activated , Animals , NF-kappa B/metabolism , Calcium/metabolism , Calcium Channels , Potassium Channels , Reactive Oxygen Species/metabolism , Cell Death , Mitochondria/metabolism , Intermediate-Conductance Calcium-Activated Potassium Channels/genetics , Intermediate-Conductance Calcium-Activated Potassium Channels/metabolism , Pancreatic Neoplasms
3.
Mol Pharm ; 19(11): 3700-3729, 2022 11 07.
Article in English | MEDLINE | ID: mdl-36174227

ABSTRACT

Central nervous system (CNS) diseases are among the most difficult to treat, mainly because the vast majority of the drugs fail to cross the blood-brain barrier (BBB) or to reach the brain at concentrations adequate to exert a pharmacological activity. The obstacle posed by the BBB has led to the in-depth study of strategies allowing the brain delivery of CNS-active drugs. Among the most promising strategies is the use of peptides addressed to the BBB. Peptides are versatile molecules that can be used to decorate nanoparticles or can be conjugated to drugs, with either a stable link or as pro-drugs. They have been used to deliver to the brain both small molecules and proteins, with applications in diverse therapeutic areas such as brain cancers, neurodegenerative diseases and imaging. Peptides can be generally classified as receptor-targeted, recognizing membrane proteins expressed by the BBB microvessels (e.g., Angiopep2, CDX, and iRGD), "cell-penetrating peptides" (CPPs; e.g. TAT47-57, SynB1/3, and Penetratin), undergoing transcytosis through unspecific mechanisms, or those exploiting a mixed approach. The advantages of peptides have been extensively pointed out, but so far few studies have focused on the potential negative aspects. Indeed, despite having a generally good safety profile, some peptide conjugates may display toxicological characteristics distinct from those of the peptide itself, causing for instance antigenicity, cardiovascular alterations or hemolysis. Other shortcomings are the often brief lifetime in vivo, caused by the presence of peptidases, the vulnerability to endosomal/lysosomal degradation, and the frequently still insufficient attainable increase of brain drug levels, which remain below the therapeutically useful concentrations. The aim of this review is to analyze not only the successful and promising aspects of the use of peptides in brain targeting but also the problems posed by this strategy for drug delivery.


Subject(s)
Brain , Nanoparticles , Brain/metabolism , Blood-Brain Barrier/metabolism , Drug Delivery Systems/methods , Transcytosis , Nanoparticles/chemistry , Central Nervous System Agents/metabolism , Pharmaceutical Preparations/metabolism
4.
Cancers (Basel) ; 14(8)2022 Apr 13.
Article in English | MEDLINE | ID: mdl-35454865

ABSTRACT

Despite several new developments in the treatment of multiple myeloma, all available therapies are only palliative without curative potential and all patients ultimately relapse. Thus, novel therapeutic options are urgently required to prolong survival of or to even cure myeloma. Here, we show that multiple myeloma cells express the potassium channel Kv1.3 in their mitochondria. The mitochondrial Kv1.3 inhibitors PAPTP and PCARBTP are efficient against two tested human multiple myeloma cell lines (L-363 and RPMI-8226) and against ex vivo cultured, patient-derived myeloma cells, while healthy bone marrow cells are spared from toxicity. Cell death after treatment with PAPTP and PCARBTP occurs via the mitochondrial apoptotic pathway. In addition, we identify up-regulation of the multidrug resistance pump MDR-1 as the main potential resistance mechanism. Combination with ABT-199 (venetoclax), an inhibitor of Bcl2, has a synergistic effect, suggesting that mitochondrial Kv1.3 inhibitors could potentially be used as combination partner to venetoclax, even in the treatment of t(11;14) negative multiple myeloma, which represent the major part of cases and are rather resistant to venetoclax alone. We thus identify mitochondrial Kv1.3 channels as druggable targets against multiple myeloma.

5.
J Exp Clin Cancer Res ; 41(1): 64, 2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35172855

ABSTRACT

BACKGROUND: Ion channels are emerging as promising oncological targets. The potassium channels Kv1.3 and IKCa are highly expressed in the plasma membrane and mitochondria of human chronic lymphocytic leukemia (CLL) cells, compared to healthy lymphocytes. In vitro, inhibition of mitoKv1.3 by PAPTP was shown to kill ex vivo primary human CLL cells, while targeting IKCa with TRAM-34 decreased CLL cell proliferation. METHODS: Here we evaluated the effect of the above drugs in CLL cells from ibrutinib-resistant patients and in combination with Venetoclax, two drugs used in the clinical practice. The effects of the drugs were tested also in the Eµ-TCL1 genetic CLL murine model, characterized by a lympho-proliferative disease reminiscent of aggressive human CLL. Eµ-TCL1 mice showing overt disease state were treated with intraperitoneal injections of non-toxic 5 nmol/g PAPTP or 10 nmol/g TRAM-34 once a day and the number and percentage of pathological B cells (CD19+CD5+) in different, pathologically relevant body districts were determined. RESULTS: We show that Kv1.3 expression correlates with sensitivity of the human and mouse neoplastic cells to PAPTP. Primary CLL cells from ibrutinib-resistant patients could be killed with PAPTP and this drug enhanced the effect of Venetoclax, by acting on mitoKv1.3 of the inner mitochondrial membrane and triggering rapid mitochondrial changes and cytochrome c release. In vivo, after 2 week- therapy of Eµ-TCL1 mice harboring distinct CLL clones, leukemia burden was reduced by more than 85%: the number and percentage of CLL B cells fall in the spleen and peritoneal cavity and in the peripheral blood, without signs of toxicity. Notably, CLL infiltration into liver and spleen and splenomegaly were also drastically reduced upon PAPTP treatment. In contrast, TRAM-34 did not exert any beneficial effect when administered in vivo to Eµ-TCL1 mice at non-toxic concentration. CONCLUSION: Altogether, by comparing vehicle versus compound effect in different Eµ-TCL1 animals bearing unique clones similarly to CLL patients, we conclude that PAPTP significantly reduced leukemia burden in CLL-relevant districts, even in animals with advanced stage of the disease. Our results thus identify PAPTP as a very promising drug for CLL treatment, even for the chemoresistant forms of the disease.


Subject(s)
B-Lymphocytes/metabolism , Kv1.3 Potassium Channel/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Animals , Apoptosis , Disease Models, Animal , Humans , Mice
7.
Nat Commun ; 12(1): 2103, 2021 04 08.
Article in English | MEDLINE | ID: mdl-33833234

ABSTRACT

Mitochondrial diseases impair oxidative phosphorylation and ATP production, while effective treatment is still lacking. Defective complex III is associated with a highly variable clinical spectrum. We show that pyocyanin, a bacterial redox cycler, can replace the redox functions of complex III, acting as an electron shunt. Sub-µM pyocyanin was harmless, restored respiration and increased ATP production in fibroblasts from five patients harboring pathogenic mutations in TTC19, BCS1L or LYRM7, involved in assembly/stabilization of complex III. Pyocyanin normalized the mitochondrial membrane potential, and mildly increased ROS production and biogenesis. These in vitro effects were confirmed in both DrosophilaTTC19KO and in Danio rerioTTC19KD, as administration of low concentrations of pyocyanin significantly ameliorated movement proficiency. Importantly, daily administration of pyocyanin for two months was not toxic in control mice. Our results point to utilization of redox cyclers for therapy of complex III disorders.


Subject(s)
Adenosine Triphosphate/biosynthesis , Electron Transport Complex III/metabolism , Membrane Proteins/genetics , Mitochondrial Diseases/drug therapy , Mitochondrial Proteins/genetics , Pyocyanine/pharmacology , ATPases Associated with Diverse Cellular Activities/genetics , Animals , Animals, Genetically Modified , Cell Line , Drosophila melanogaster , Electron Transport Complex III/genetics , Humans , Membrane Potential, Mitochondrial/drug effects , Membrane Potential, Mitochondrial/physiology , Mice , Mitochondrial Diseases/pathology , Molecular Chaperones/genetics , Oxidation-Reduction/drug effects , Pyocyanine/metabolism , Reactive Oxygen Species/metabolism , Zebrafish
8.
Pharmaceuticals (Basel) ; 14(2)2021 Feb 06.
Article in English | MEDLINE | ID: mdl-33562146

ABSTRACT

A developing family of chemotherapeutics-derived from 5-(4-phenoxybutoxy)psoralen (PAP-1)-target mitochondrial potassium channel mtKv1.3 to selectively induce oxidative stress and death of diseased cells. The key to their effectiveness is the presence of a positively charged triphenylphosphonium group which drives their accumulation in the organelles. These compounds have proven their preclinical worth in murine models of cancers such as melanoma and pancreatic adenocarcinoma. In in vitro experiments they also efficiently killed glioblastoma cells, but in vivo they were powerless against orthotopic glioma because they were completely unable to overcome the blood-brain barrier. In an effort to improve brain delivery we have now coupled one of these promising compounds, PAPTP, to well-known cell-penetrating and brain-targeting peptides TAT48-61 and Angiopep-2. Coupling has been obtained by linking one of the phenyl groups of the triphenylphosphonium to the first amino acid of the peptide via a reversible carbamate ester bond. Both TAT48-61 and Angiopep-2 allowed the delivery of 0.3-0.4 nmoles of construct per gram of brain tissue upon intravenous (i.v.) injection of 5 µmoles/kg bw to mice. This is the first evidence of PAPTP delivery to the brain; the chemical strategy described here opens the possibility to conjugate PAPTP to small peptides in order to fine-tune tissue distribution of this interesting compound.

9.
Redox Biol ; 42: 101846, 2021 06.
Article in English | MEDLINE | ID: mdl-33419703

ABSTRACT

Pharmacological targeting of mitochondrial ion channels is emerging as a promising approach to eliminate cancer cells; as most of these channels are differentially expressed and/or regulated in cancer cells in comparison to healthy ones, this strategy may selectively eliminate the former. Perturbation of ion fluxes across the outer and inner membranes is linked to alterations of redox state, membrane potential and bioenergetic efficiency. This leads to indirect modulation of oxidative phosphorylation, which is/may be fundamental for both cancer and cancer stem cell survival. Furthermore, given the crucial contribution of mitochondria to intrinsic apoptosis, modulation of their ion channels leading to cytochrome c release may be of great advantage in case of resistance to drugs triggering apoptotic events upstream of the mitochondrial phase. In the present review, we give an overview of the known mitochondrial ion channels and of their modulators capable of killing cancer cells. In addition, we discuss state-of-the-art strategies using mitochondriotropic drugs or peptide-based approaches allowing a more efficient and selective targeting of mitochondrial ion channel-linked events.


Subject(s)
Mitochondria , Neoplasms , Apoptosis , Cytochromes c/metabolism , Humans , Ion Channels , Mitochondria/metabolism , Neoplasms/drug therapy
10.
Cell Physiol Biochem ; 55(1): 61-90, 2021 Jan 29.
Article in English | MEDLINE | ID: mdl-33508184

ABSTRACT

Pancreatic cancers are among the most ominous, and among the most studied. Their complexities have provided ample material for a huge investigative effort, which is briefly surveyed in this review. Eradication by surgery has proven extremely difficult, and a successful chemotherapeutic approach is desperately needed. Treatment with "traditional" anticancer drugs, such as benchmark gemcitabine or the current standard-of-care FOLFIRINOX quaternary combination increase the mean overall survival by only a few months and often leads to chemoresistance. Much work is therefore currently devoted to potentiating our pharmacological weapons by accurate targeting and, in particular, by acting on the dense tumoral stroma, a distinctive feature of PDAC accounting for much of the therapeutic difficulty. We give an overview of recent developments, touching on the major aspects of PDAC physiology and biochemistry, currently-used and experimental drugs, and targeting technologies under development. A few papers are discussed in some detail to help provide a sense of how the field is moving.


Subject(s)
Antineoplastic Agents/therapeutic use , Carcinoma, Pancreatic Ductal/drug therapy , Drug Delivery Systems , Drug Resistance, Neoplasm/drug effects , Pancreatic Neoplasms/drug therapy , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Humans , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology
11.
Oxid Med Cell Longev ; 2021: 7658501, 2021.
Article in English | MEDLINE | ID: mdl-34992716

ABSTRACT

Pterostilbene (Pt) is a potentially beneficial plant phenol. In contrast to many other natural compounds (including the more celebrated resveratrol), Pt concentrations producing significant effects in vitro can also be reached with relative ease in vivo. Here we focus on some of the mechanisms underlying its activity, those involved in the activation of transcription factor EB (TFEB). A set of processes leading to this outcome starts with the generation of ROS, attributed to the interaction of Pt with complex I of the mitochondrial respiratory chain, and spreads to involve Ca2+ mobilization from the ER/mitochondria pool, activation of CREB and AMPK, and inhibition of mTORC1. TFEB migration to the nucleus results in the upregulation of autophagy and lysosomal and mitochondrial biogenesis. Cells exposed to several µM levels of Pt experience a mitochondrial crisis, an indication for using low doses in therapeutic or nutraceutical applications. Pt afforded significant functional improvements in a zebrafish embryo model of ColVI-related myopathy, a pathology which also involves defective autophagy. Furthermore, long-term supplementation with Pt reduced body weight gain and increased transcription levels of Ppargc1a and Tfeb in a mouse model of diet-induced obesity. These in vivo findings strengthen the in vitro observations and highlight the therapeutic potential of this natural compound.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Stilbenes/metabolism , Animals , Disease Models, Animal , HeLa Cells , Humans , Mice , Transcription Factors , Zebrafish
12.
Pharmacol Res ; 164: 105326, 2021 02.
Article in English | MEDLINE | ID: mdl-33338625

ABSTRACT

The two-pore potassium channel TASK-3 has been shown to localize to both the plasma membrane and the mitochondrial inner membrane. TASK-3 is highly expressed in melanoma and breast cancer cells and has been proposed to promote tumor formation. Here we investigated whether pharmacological modulation of TASK-3, and specifically of mitochondrial TASK-3 (mitoTASK-3), had any effect on cancer cell survival and mitochondrial physiology. A novel, mitochondriotropic version of the specific TASK-3 inhibitor IN-THPP has been synthesized by addition of a positively charged triphenylphosphonium moiety. While IN-THPP was unable to induce apoptosis, mitoIN-THPP decreased survival of breast cancer cells and efficiently killed melanoma lines, which we show to express mitoTASK-3. Cell death was accompanied by mitochondrial membrane depolarization and fragmentation of the mitochondrial network, suggesting a role of the channel in the maintenance of the correct function of this organelle. In accordance, cells treated with mitoIN-THPP became rapidly depleted of mitochondrial ATP which resulted in activation of the AMP-dependent kinase AMPK. Importantly, cell survival was not affected in mouse embryonic fibroblasts and the effect of mitoIN-THPP was less pronounced in human melanoma cells stably knocked down for TASK-3 expression, indicating a certain degree of selectivity of the drug both for pathological cells and for the channel. In addition, mitoIN-THPP inhibited cancer cell migration to a higher extent than IN-THPP in two melanoma cell lines. In summary, our results point to the importance of mitoTASK-3 for melanoma cell survival and migration.


Subject(s)
Mitochondria/drug effects , Potassium Channel Blockers/pharmacology , Potassium Channels/metabolism , Pyrimidines/pharmacology , Adenosine Triphosphate/metabolism , Animals , Cell Line, Tumor , Cell Movement/drug effects , Humans , Membrane Potential, Mitochondrial/drug effects , Mice , Mitochondria/physiology , Potassium Channel Blockers/chemical synthesis , Pyrimidines/chemical synthesis , Reactive Oxygen Species/metabolism
13.
Redox Biol ; 37: 101705, 2020 10.
Article in English | MEDLINE | ID: mdl-33007503

ABSTRACT

The potassium channel Kv1.3, involved in several important pathologies, is the target of a family of psoralen-based drugs whose mechanism of action is not fully understood. Here we provide evidence for a physical interaction of the mitochondria-located Kv1.3 (mtKv1.3) and Complex I of the respiratory chain and show that this proximity underlies the death-inducing ability of psoralenic Kv1.3 inhibitors. The effects of PAP-1-MHEG (PAP-1, a Kv1.3 inhibitor, with six monomeric ethylene glycol units attached to the phenyl ring of PAP-1), a more soluble novel derivative of PAP-1 and of its various portions on mitochondrial physiology indicate that the psoralenic moiety of PAP-1 bound to mtKv1.3 facilitates the diversion of electrons from Complex I to molecular oxygen. The resulting massive production of toxic Reactive Oxygen Species leads to death of cancer cells expressing Kv1.3. In vivo, PAP-1-MHEG significantly decreased melanoma volume. In summary, PAP-1-MHEG offers insights into the mechanisms of cytotoxicity of this family of compounds and may represent a valuable clinical tool.


Subject(s)
Kv1.3 Potassium Channel , Mitochondria , Animals , Cell Line, Tumor , Dissection , Humans , Kv1.3 Potassium Channel/antagonists & inhibitors , Kv1.3 Potassium Channel/genetics , Mice, Inbred C57BL , Reactive Oxygen Species
14.
Cell Physiol Biochem ; 53(S1): 11-43, 2019.
Article in English | MEDLINE | ID: mdl-31834993

ABSTRACT

Ion channels residing in the inner (IMM) and outer (OMM) mitochondrial membranes are emerging as noteworthy pharmacological targets in oncology. While these aspects have not been investigated for all of them, a role in cancer growth and/or metastasis and/or drug resistance has been shown at least for the IMM-residing Ca2+ uniporter complex and K+- selective mtKV1.3, mtIKCa, mtSKCa and mtTASK-3, and for the OMM Voltage-Dependent Anion Channel (mitochondrial porin). A special case is that of the Mitochondrial Permeability Transition Pore, a large pore which forms in the IMM of severely stressed cells, and which may be exploited to precipitate the death of cancerous cells. Here we briefly discuss the oncological relevance of mitochondria and their channels, and summarize the methods that can be adopted to selectively target these intracellular organelles. We then present an updated list of known mitochondrial channels, and review the pharmacology of those with proven relevance for cancer.


Subject(s)
Antineoplastic Agents/chemistry , Ion Channels/metabolism , Mitochondria/metabolism , Small Molecule Libraries/chemistry , Antineoplastic Agents/metabolism , Antineoplastic Agents/therapeutic use , Calcium Channels/chemistry , Calcium Channels/metabolism , Humans , Ion Channels/chemistry , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Permeability Transition Pore , Neoplasms/drug therapy , Neoplasms/pathology , Potassium Channels/chemistry , Potassium Channels/metabolism , Small Molecule Libraries/metabolism , Small Molecule Libraries/therapeutic use , Voltage-Dependent Anion Channels/chemistry , Voltage-Dependent Anion Channels/metabolism
15.
Cell Physiol Biochem ; 53(S1): 1-10, 2019.
Article in English | MEDLINE | ID: mdl-31804046

ABSTRACT

BACKGROUND/AIMS: We have previously shown that inhibition of the mitochondrial Kv1.3 channel results in an initial mitochondrial hyperpolarization and a release of oxygen radicals that mediate mitochondrial depolarization, cytochrome c release and death. Here, we investigated whether inhibition of Kv1.3 channels can also induce cellular resistance mechanisms that counteract the induction of cell death under certain conditions. METHODS: We treated leukemic T cells with the mitochondria-targeted Kv1.3 inhibitor PCARBTP and determined the activity of different kinases associated with cell survival including ZAP70, PI-3-K, AKT, JNK and ERK by measuring the activation-associated phosphorylation of these proteins. Furthermore, we inhibited AKT and JNK and determined the effect of PCARBTP-induced tumor cell death. RESULTS: We demonstrate that treatment of Jurkat T leukemia cells with low doses of the mitochondria-targeted inhibitor of Kv1.3 PCARBTP (0.25 µM or 1 µM) for 10 minutes induced a constitutive phosphorylation/activation of the pro-survival signaling molecules ZAP70, PI-3-K, AKT and JNK, while the phosphorylation/activation of ERK was not affected. Stimulation of Jurkat cells via the TCR/CD3 complex induced an additional activation of a similar pattern of signaling events. Higher doses of the Kv1.3 inhibitor, i.e. 10 µM PCARBTP, reduced the basal phosphorylation/activation of these signaling molecules and also impaired their activation upon stimulation via the TCR/CD3 complex. A low dose of PCARBTP, i.e. 0.25 µM PCARBTP, was almost without any effect on cell death. In contrast, concomitant inhibition of PI-3-K or AKT greatly sensitized Jurkat leukemia cells to the Kv1.3 inhibitor PCARBTP and allowed induction of cell death already at 0.25 µM PCARBTP. CONCLUSION: These studies indicate that Jurkat leukemia cells respond to low doses of the mitochondria-targeted Kv1.3 inhibitor PCARBTP with an activation of survival signals counteracting cell death. Inhibition of these T cell survival signals sensitizes leukemia cells to death induced by mitochondria-targeted Kv1.3 inhibitors. High doses of the Kv1.3 inhibitor inactivate these signals directly permitting death.


Subject(s)
Apoptosis/drug effects , Coumarins/pharmacology , Organophosphorus Compounds/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Humans , JNK Mitogen-Activated Protein Kinases/antagonists & inhibitors , JNK Mitogen-Activated Protein Kinases/metabolism , Jurkat Cells , Leukemia/metabolism , Leukemia/pathology , Mitochondria/metabolism , Phosphatidylinositol 3-Kinases/chemistry , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Signal Transduction/drug effects , ZAP-70 Protein-Tyrosine Kinase/antagonists & inhibitors , ZAP-70 Protein-Tyrosine Kinase/metabolism
16.
Cell Rep ; 28(8): 1949-1960.e6, 2019 08 20.
Article in English | MEDLINE | ID: mdl-31433973

ABSTRACT

Wnt signaling affects fundamental development pathways and, if aberrantly activated, promotes the development of cancers. Wnt signaling is modulated by different factors, but whether the mitochondrial energetic state affects Wnt signaling is unknown. Here, we show that sublethal concentrations of different compounds that decrease mitochondrial ATP production specifically downregulate Wnt/ß-catenin signaling in vitro in colon cancer cells and in vivo in zebrafish reporter lines. Accordingly, fibroblasts from a GRACILE syndrome patient and a generated zebrafish model lead to reduced Wnt signaling. We identify a mitochondria-Wnt signaling axis whereby a decrease in mitochondrial ATP reduces calcium uptake into the endoplasmic reticulum (ER), leading to endoplasmic reticulum stress and to impaired Wnt signaling. In turn, the recovery of the ATP level or the inhibition of endoplasmic reticulum stress restores Wnt activity. These findings reveal a mechanism that links mitochondrial energetic metabolism to the control of the Wnt pathway that may be beneficial against several pathologies.


Subject(s)
Adenosine Triphosphate/biosynthesis , Down-Regulation , Endoplasmic Reticulum Stress , Mitochondria/metabolism , Wnt Signaling Pathway , Animals , Cell Line , Fibroblasts/metabolism , Humans , Zebrafish
17.
Eur J Med Chem ; 181: 111557, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31374419

ABSTRACT

Many potential pharmacological targets are present in multiple subcellular compartments and have different pathophysiological roles depending on location. In these cases, selective targeting of a drug to the relevant subcellular domain(s) may help to sharpen its impact by providing topological specificity, thus limiting side effects, and to concentrate the compound where needed, thus increasing its effectiveness. We review here the state of the art in precision subcellular delivery. The major approaches confer "homing" properties to the active principle via permanent or reversible (in pro-drug fashion) modifications, or through the use of special-design nanoparticles or liposomes to ferry a drug(s) cargo to its desired destination. An assortment of peptides, substituents with delocalized positive charges, custom-blended lipid mixtures, pH- or enzyme-sensitive groups provide the main tools of the trade. Mitochondria, lysosomes and the cell membrane may be mentioned as the fronts on which the most significant advances have been made. Most of the examples presented here have to do with targeting natural compounds - in particular polyphenols, known as pleiotropic agents - to one or the other subcellular compartment.


Subject(s)
Biological Products/pharmacology , Hypolipidemic Agents/pharmacology , Polyphenols/pharmacology , Animals , Biological Products/chemistry , Cell Membrane/drug effects , Endoplasmic Reticulum/drug effects , Humans , Hypolipidemic Agents/chemistry , Liposomes/antagonists & inhibitors , Mitochondria/drug effects , Polyphenols/chemistry
18.
Cell Physiol Biochem ; 52(2): 232-239, 2019.
Article in English | MEDLINE | ID: mdl-30816671

ABSTRACT

BACKGROUND/AIMS: Pterostilbene (Pt; trans-3,5-dimethoxy-4'-hydroxystilbene) is a natural phenol found in blueberries and grapevines. It shows remarkable biomedical activities similar to those of resveratrol. Its high bioavailability is a major advantage for possible biomedical applications. The goal of the study was to evaluate the effects of chronic pterostilbene administration on cognitive performance in aged rats with mild cognitive impairment. METHODS: 18-month-old animals were subjected to behavioral tests to establish the "baseline", then divided into treatment and control groups. The former were chronically fed Pt (22.5 mg/kg-day) for 20 consecutive days. At the end of this period all animals were tested again and sacrificed. The dentate gyrus, the hippocampus and the prefrontal and perirhinal cortices were then collected, and RT-qPCR and/or Western blot analyses were performed on a few transcripts/proteins involved in synaptic remodeling. Mitochondrial content was also assessed. RESULTS: Pt administration improved performance in behavioral tests and positively affected memory consolidation. We found increased levels of REST, PSD-95 and mitochondrial porin1 in the dentate gyrus and a positive correlation between T-maze test score and levels of cAMP responsive element binding protein (CREB) phosphorylation. CONCLUSION: These results underscore the therapeutic potential of Pt supplementation for age-related cognitive decline.


Subject(s)
Aging/metabolism , Behavior, Animal/drug effects , Cognition/drug effects , Maze Learning/drug effects , Stilbenes/pharmacology , Animals , CREB-Binding Protein/metabolism , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/pathology , Dentate Gyrus/metabolism , Disks Large Homolog 4 Protein/biosynthesis , Rats , Repressor Proteins/biosynthesis
19.
Br J Pharmacol ; 176(22): 4258-4283, 2019 11.
Article in English | MEDLINE | ID: mdl-30440086

ABSTRACT

The field of mitochondrial ion channels has undergone a rapid development during the last three decades, due to the molecular identification of some of the channels residing in the outer and inner membranes. Relevant information about the function of these channels in physiological and pathological settings was gained thanks to genetic models for a few, mitochondria-specific channels. However, many ion channels have multiple localizations within the cell, hampering a clear-cut determination of their function by pharmacological means. The present review summarizes our current knowledge about the ins and outs of mitochondrial ion channels, with special focus on the channels that have received much attention in recent years, namely, the voltage-dependent anion channels, the permeability transition pore (also called mitochondrial megachannel), the mitochondrial calcium uniporter and some of the inner membrane-located potassium channels. In addition, possible strategies to overcome the difficulties of specifically targeting mitochondrial channels versus their counterparts active in other membranes are discussed, as well as the possibilities of modulating channel function by small peptides that compete for binding with protein interacting partners. Altogether, these promising tools along with large-scale chemical screenings set up to identify new, specific channel modulators will hopefully allow us to pinpoint the actual function of most mitochondrial ion channels in the near future and to pharmacologically affect important pathologies in which they are involved, such as neurodegeneration, ischaemic damage and cancer. LINKED ARTICLES: This article is part of a themed section on Mitochondrial Pharmacology: Featured Mechanisms and Approaches for Therapy Translation. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.22/issuetoc.


Subject(s)
Ion Channels/physiology , Membrane Transport Modulators/pharmacology , Mitochondria/drug effects , Animals , Humans , Mitochondria/physiology
20.
Front Oncol ; 8: 122, 2018.
Article in English | MEDLINE | ID: mdl-29740538

ABSTRACT

Targeting small molecules to appropriate subcellular compartments is a way to increase their selectivity and effectiveness while minimizing side effects. This can be accomplished either by stably incorporating specific "homing" properties into the structure of the active principle, or by attaching to it a targeting moiety via a labile linker, i.e., by producing a "targeting pro-drug." Mitochondria are a recognized therapeutic target in oncology, and blocking the population of the potassium channel Kv1.3 residing in the inner mitochondrial membrane (mtKv1.3) has been shown to cause apoptosis of cancerous cells expressing it. These concepts have led us to devise novel, mitochondria-targeted, membrane-permeant drug candidates containing the furocoumarin (psoralenic) ring system and the triphenylphosphonium (TPP) lipophilic cation. The strategy has proven effective in various cancer models, including pancreatic ductal adenocarcinoma, melanoma, and glioblastoma, stimulating us to devise further novel molecules to extend and diversify the range of available drugs of this type. New compounds were synthesized and tested in vitro; one of them-a prodrug in which the coumarinic moiety and the TPP group are linked by a bridge comprising a labile carbonate bond system-proved quite effective in in vitro cytotoxicity assays. Selective death induction is attributed to inhibition of mtKv1.3. This results in oxidative stress, which is fatal for the already-stressed malignant cells. This compound may thus be a candidate drug for the mtKv1.3-targeting therapeutic approach.

SELECTION OF CITATIONS
SEARCH DETAIL
...