Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 638
Filter
1.
EFSA J ; 22(7): e8871, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38957750

ABSTRACT

The food enzyme α-l-rhamnosidase (α-l-rhamnoside rhamnohydrolase; EC 3.2.1.40) is produced with Penicillium adametzii strain AE-HP by Amano Enzymes Inc. A safety evaluation of this food enzyme was made previously, in which EFSA concluded that this food enzyme did not give rise to safety concerns when used in two food manufacturing processes. Subsequently, the applicant has requested to extend its use to include two additional processes. In this assessment, EFSA updated the safety evaluation of this food enzyme when used in a total of four food manufacturing processes. Dietary exposure to the food enzyme-total organic solids (TOS) was calculated to be up to 0.022 mg TOS/kg body weight (bw) per day in European populations. Using the no observed adverse effect level reported in the previous opinion (300 mg TOS/kg bw per day, the highest dose tested), the Panel derived a margin of exposure of at least 13,636. Based on the data provided for the previous evaluation and the revised margin of exposure in the present evaluation, the Panel concluded that this food enzyme does not give rise to safety concerns under the revised intended conditions of use.

2.
EFSA J ; 22(7): e8867, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38957751

ABSTRACT

The food enzyme glutaminase (l-glutamine amidohydrolase; EC 3.5.1.2) is produced with the non-genetically modified Bacillus amyloliquefaciens strain AE-GT by Amano Enzyme Inc. A safety evaluation of this food enzyme was made previously, in which EFSA concluded that this food enzyme did not give rise to safety concerns when used in five food manufacturing processes. Subsequently, the applicant requested to extend its use to thirteen additional processes and to revise the use levels. In this assessment, EFSA updated the safety evaluation of this food enzyme when used in a total of eighteen food manufacturing processes. As the food enzyme-total organic solids (TOS) are removed from the final foods in two food manufacturing processes, the dietary exposure to the food enzyme-TOS was estimated only for the remaining sixteen processes. Dietary exposure was calculated to be up to 0.678 mg TOS/kg body weight per day in European populations. Based on the data provided for the previous evaluation and the revised dietary exposure in the present evaluation, the Panel concluded that this food enzyme does not give rise to safety concerns under the revised intended conditions of use.

3.
EFSA J ; 22(7): e8876, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38957752

ABSTRACT

The food enzyme 3-phytase (myo-inositol-hexakisphosphate 3-phosphohydrolase EC 3.1.3.8) is produced with the non-genetically modified Aspergillus niger strain PHY93-08 by Shin Nihon Chemical Co., Ltd. The food enzyme is free from viable cells of the production organism. It is intended to be used in nine food manufacturing processes. Since residual amounts of food enzyme-total organic solids (TOS) are removed in two of the food manufacturing processes, dietary exposure was calculated only for the remaining seven processes. It was estimated to be up to 0.763 mg TOS/kg body weight (bw) per day in European populations. Genotoxicity tests did not raise safety concerns. The systemic toxicity was assessed by means of a repeated dose 90-day oral toxicity study in rats. The Panel identified a no observed adverse effect level of 2560 mg TOS/kg bw per day, the highest dose tested, which when compared with the estimated dietary exposure, resulted in a margin of exposure of at least 3355. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and no matches were found. The Panel considered that the risk of allergic reactions upon dietary exposure cannot be excluded, but the likelihood is low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.

4.
EFSA J ; 22(7): e8868, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38966135

ABSTRACT

The food enzyme bacillolysin (EC 3.4.24.28) is produced with the non-genetically modified Bacillus amyloliquefaciens strain AE-NP by Amano Enzyme Inc. A safety evaluation of this food enzyme was made previously, in which EFSA concluded that this food enzyme did not give rise to safety concerns when used in thirteen food manufacturing processes. Subsequently, the applicant requested to extend its use to two additional processes. In this assessment, EFSA updated the safety evaluation of this food enzyme when used in a total of fifteen food manufacturing processes. As the food enzyme-total organic solids (TOS) are removed in two food manufacturing processes, the dietary exposure to the food enzyme-TOS was estimated only for the remaining thirteen processes. Dietary exposure was calculated to be up to 35.251 mg TOS/kg body weight per day in European populations. Based on the data provided for the previous evaluation and the revised dietary exposure in the present evaluation, the Panel concluded that this food enzyme does not give rise to safety concerns under the revised intended conditions of use.

5.
EFSA J ; 22(7): e8873, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38966132

ABSTRACT

The food enzyme subtilisin (EC 3.4.21.62) is produced with the non-genetically modified Bacillus paralicheniformis strain AP-01 by Nagase (Europa) GmbH. It was considered free from viable cells of the production organism. The food enzyme is intended to be used in five food manufacturing processes. Since residual amounts of food enzyme-total organic solids (TOS) are removed in one process, dietary exposure was calculated only for the remaining four food manufacturing processes. It was estimated to be up to 0.875 mg TOS/kg body weight per day in European populations. The production strain of the food enzyme has the capacity to produce bacitracin and thus failed to meet the requirements of the Qualified Presumption of Safety approach. Bacitracin was detected in the industrial fermentation medium but not in the food enzyme itself. However, the limit of detection of the analytical method used for bacitracin was not sufficient to exclude the possible presence of bacitracin at a level representing a risk for the development of antimicrobial resistant bacteria. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and twenty-eight matches with respiratory allergens, one match with a contact allergen and two matches with food allergens (melon and pomegranate) were found. The Panel considered that the risk of allergic reactions upon dietary exposure to this food enzyme, particularly in individuals sensitised to melon or pomegranate, cannot be excluded, but would not exceed the risk of consuming melon or pomegranate. Based on the data provided, the Panel could not exclude the presence of bacitracin, a medically important antimicrobial, and consequently the safety of this food enzyme could not be established.

6.
EFSA J ; 22(7): e8878, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38966136

ABSTRACT

The EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP) assessed the safety of the recycling process Fucine Film (EU register number RECYC322), which uses the Reifenhäuser technology. The input material consists of hot caustic washed and dried poly(ethylene terephthalate) (PET) flakes mainly originating from collected post-consumer PET containers, including no more than 5% PET from non-food consumer applications. The flakes are extruded under vacuum into sheets. The recycled sheets are intended to be used at up to 100% for the manufacture of materials and articles for contact with all types of foodstuffs, excluded drinking water and beverages, for long-term storage at room temperature, with or without hotfill. Based on the limited data available, the Panel concluded that the information submitted to EFSA was inadequate to demonstrate that the recycling process Fucine Film is able to reduce potential unknown contamination of the input PET flakes to a concentration that does not pose a risk to human health.

7.
EFSA J ; 22(7): e8872, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38966133

ABSTRACT

The food enzyme ß-glucosidase (ß-D-glucoside glucohydrolase; EC 3.2.1.21) is produced with the non-genetically modified Penicillium guanacastense strain AE-GLY by Amano Enzyme Inc. The food enzyme is intended to be used in four food manufacturing processes. Dietary exposure to the food enzyme-total organic solids (TOS) was estimated to be up to 4.054 mg TOS/kg body weight (bw) per day in European populations. Genotoxicity tests did not raise a safety concern. The systemic toxicity was assessed by means of a repeated dose 90-day oral toxicity study in rats. The Panel identified a no observed adverse effect level of 943 mg TOS/kg bw per day, the highest dose tested, which when compared with the estimated dietary exposure, resulted in a margin of exposure of at least 233. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and no match was found. The Panel considered that the risk of allergic reactions by dietary exposure cannot be excluded, but the likelihood is low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.

8.
EFSA J ; 22(7): e8870, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38962758

ABSTRACT

The food enzyme α-amylase (4-α-d-glucan glucanohydrolase; EC 3.2.1.1) is produced with the non-genetically modified microorganism Bacillus licheniformis strain AE-TA by Amano Enzyme Inc. A safety evaluation of this food enzyme was made previously, in which EFSA concluded that this food enzyme did not give rise to safety concerns when used in eight food manufacturing processes. Subsequently, the applicant has requested to extend its use to include one additional process and to revise the use levels. In this assessment, EFSA updated the safety evaluation of this food enzyme when used in a total of nine food manufacturing processes. As the food enzyme-total organic solids (TOS) are removed from the final foods in two food manufacturing processes, the dietary exposure to the food enzyme-TOS was estimated only for the remaining seven processes. Dietary exposure was calculated to be up to 0.382 mg TOS/kg body weight per day in European populations. Based on the data provided for the previous evaluation and the revised dietary exposure in the present evaluation, the Panel concluded that this food enzyme does not give rise to safety concerns under the revised intended conditions of use.

9.
EFSA J ; 22(7): e8877, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38974925

ABSTRACT

The food enzyme triacylglycerol lipase (triacylglycerol acylhydrolase; EC 3.1.1.3) is produced with the non-genetically modified Penicillium caseifulvum strain AE-LRF by Amano Enzyme Inc. The food enzyme was free from viable cells of the production organism. It is intended to be used in four food manufacturing processes. Dietary exposure to the food enzyme-total organic solids (TOS) was estimated to be up to 0.013 mg TOS/kg body weight (bw) per day in European populations. Genotoxicity tests did not indicate a safety concern. The systemic toxicity was assessed by means of a repeated dose 90-day oral toxicity study in rats. The Panel identified a no observed adverse effect level of 69 mg TOS/kg bw per day, the highest dose tested, which when compared with the estimated dietary exposure, resulted in a margin of exposure of at least 5308. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and no match was found. However, the Panel noted that traces of ■■■■■, used in the manufacture of the triacylglycerol lipase, may be found in the food enzyme. The Panel considered that the risk of allergic reactions upon dietary exposure could not be excluded, particularly in individuals sensitised to fish. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns, under the intended conditions of use.

10.
Poult Sci ; 103(9): 103975, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38945001

ABSTRACT

Submerged cultivation using low-value agro-industrial side streams allows large-scale and efficient production of fungal mycelia, which has a high nutritional value. As the dietary properties of fungal mycelia in poultry are largely unknown, the present study aimed to investigate the effect of feeding a Pleurotus sapidus (PSA) mycelium as a feed supplement on growth performance, composition of the cecal microbiota and several physiological traits including gut integrity, nutrient digestibility, liver lipids, liver transcriptome and plasma metabolome in broilers. 72 males, 1-day-old Cobb 500 broilers were randomly assigned to 3 different groups and fed 3 different adequate diets containing either 0% (PSA-0), 2.5% (PSA-2.5) and 5% (PSA-5.0) P. sapidus mycelium in a 3-phase feeding system for 35 d. Each group consisted of 6 cages (replicates) with 4 broilers/cage. Body weight gain, feed intake and feed:gain ratio and apparent ileal digestibility of crude protein, ether extract and amino acids were not different between groups. Metagenomic analysis of the cecal microbiota revealed no differences between groups, except that one α-diversity metric (Shannon index) and the abundance of 2 low-abundance bacterial taxa (Clostridia UCG 014, Eubacteriales) differed between groups (P < 0.05). Concentrations of total and individual short-chain fatty acids in the cecal digesta and concentrations of plasma lipopolysaccharide and mRNA levels of proinflammatory genes, tight-junction proteins, and mucins in the cecum mucosa did not differ between groups. None of the plasma metabolites analyzed using targeted-metabolomics differed across the groups. Hepatic transcript profiling revealed a total of 144 transcripts to be differentially expressed between group PSA-5.0 and group PSA-0 but none of these genes was regulated greater 2-fold. Considering either the lack of effects or the very weak effects of feeding the P. sapidus mycelium in the broilers it can be concluded that inclusion of a sustainably produced fungal mycelium in broiler diets at the expense of other feed components has no negative consequences on broilers´ performance and metabolism.

11.
J Agric Food Chem ; 72(19): 11002-11012, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38700031

ABSTRACT

Due to the increasing demand for natural food ingredients, including taste-active compounds, enzyme-catalyzed conversions of natural substrates, such as flavonoids, are promising tools to align with the principles of Green Chemistry. In this study, a novel O-methyltransferase activity was identified in the mycelium of Lentinula edodes, which was successfully applied to generate the taste-active flavonoids hesperetin, hesperetin dihydrochalcone, homoeriodictyol, and homoeriodictyol dihydrochalcone. Furthermore, the mycelium-mediated OMT activity allowed for the conversion of various catecholic substrates, yielding their respective (iso-)vanilloids, while monohydroxylated compounds were not converted. By means of a bottom-up proteomics approach, three putative O-methyltransferases were identified, and subsequently, synthetic, codon-optimized genes were heterologously expressed in Escherichia coli. The purified enzymes confirmed the biocatalytic O-methylation activity against targeted flavonoids containing catechol motifs.


Subject(s)
Biocatalysis , Catechol O-Methyltransferase , Flavonoids , Fungal Proteins , Shiitake Mushrooms , Shiitake Mushrooms/enzymology , Shiitake Mushrooms/genetics , Shiitake Mushrooms/chemistry , Shiitake Mushrooms/metabolism , Catechol O-Methyltransferase/genetics , Catechol O-Methyltransferase/metabolism , Catechol O-Methyltransferase/chemistry , Fungal Proteins/genetics , Fungal Proteins/metabolism , Fungal Proteins/chemistry , Flavonoids/chemistry , Flavonoids/metabolism , Flavoring Agents/metabolism , Flavoring Agents/chemistry , Mycelium/enzymology , Mycelium/genetics , Mycelium/chemistry , Mycelium/metabolism , Substrate Specificity
12.
EFSA J ; 22(5): e8775, 2024 May.
Article in English | MEDLINE | ID: mdl-38751502

ABSTRACT

The food enzyme sucrose phosphorylase (sucrose: phosphate α- d-glucosyltransferase; EC 2.4.1.7) is produced with the genetically modified Escherichia coli strain LE1B109-pPB129 by c-LEcta GmbH. The genetic modifications do not give rise to safety concerns. The food enzyme was free from viable cells of the production organism. It is intended to be used in combination with a cellobiose phosphorylase in the production of the specialty carbohydrate cellobiose. Since residual amounts of food enzyme-total organic solids are removed by the downstream purification steps, the Panel considered that toxicological studies other than assessment of allergenicity were unnecessary and a dietary exposure was not estimated. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and no match was found. The Panel considered that the risk of allergic reactions upon dietary exposure cannot be excluded, but the likelihood is low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.

13.
EFSA J ; 22(5): e8780, 2024 May.
Article in English | MEDLINE | ID: mdl-38751507

ABSTRACT

The food enzyme α-amylase (4-α-d-glucan glucanohydrolase; EC 3.2.1.1) is produced with the non-genetically modified microorganism Bacillus licheniformis strain AE-TA by Amano Enzyme Inc. The food enzyme is intended to be used in eight food manufacturing processes. Since residual amounts of food enzyme-total organic solids (TOS) are removed in two food manufacturing processes, dietary exposure was calculated only for the remaining six processes. It was estimated to be up to 0.056 mg TOS/kg body weight per day in European populations. The production strain of the food enzyme fulfils the requirements for the qualified presumption of safety approach to safety assessment. Consequently, in the absence of other concerns, the Panel considered that toxicological studies were not needed for the safety assessment of this food enzyme. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and two matches with respiratory allergens were found. The Panel considered that the risk of allergic reactions upon dietary exposure to this food enzyme cannot be excluded (except for the production of distilled alcohol), but the likelihood is low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.

14.
EFSA J ; 22(5): e8770, 2024 May.
Article in English | MEDLINE | ID: mdl-38756348

ABSTRACT

Bacillus paralicheniformis, a species known to produce the antimicrobial bacitracin, could be misidentified as Bacillus licheniformis, depending on the identification method used. For this reason, the European Commission requested EFSA to review the taxonomic identification of formerly assessed B. licheniformis production strains. Following this request, EFSA retrieved the raw data from 27 technical dossiers submitted and found that the taxonomic identification was established by 16S rRNA gene analyses for 15 strains and by whole genome sequence analysis for 12 strains. As a conclusion, only these 12 strains could be unambiguously identified as B. licheniformis.

15.
EFSA J ; 22(5): e8773, 2024 May.
Article in English | MEDLINE | ID: mdl-38720962

ABSTRACT

The food enzyme glucan 1,4-α-glucosidase (4-α-d-glucan glucohydrolase; EC 3.2.1.3) is produced with the non-genetically modified Rhizopus arrhizus strain AE-G by Amano Enzyme Inc. A safety evaluation of this food enzyme was made previously, in which EFSA concluded that this food enzyme did not give rise to safety concerns when used in one food manufacturing process. Subsequently, the applicant requested to extend its use to nine additional processes and revised the use levels. In this assessment, EFSA updated the safety evaluation of this food enzyme for uses in a total of 10 food manufacturing processes. As the food enzyme-total organic solids (TOS) is removed from the final foods in two food manufacturing processes, the dietary exposure to the food enzyme-TOS was estimated only for the remaining eight processes. Dietary exposure was up to 0.424 mg TOS/kg body weight (bw) per day in European populations. When combined with the no observed adverse effect level previously reported (1868 mg TOS/kg bw per day, the highest dose tested), the Panel derived a margin of exposure of at least 4406. Based on the data provided for the previous evaluation and the margin of exposure revised in the present evaluation, the Panel concluded that this food enzyme does not give rise to safety concerns under the revised intended conditions of use.

16.
EFSA J ; 22(5): e8772, 2024 May.
Article in English | MEDLINE | ID: mdl-38720964

ABSTRACT

The food enzyme ß-amylase (4-α-d-glucan maltohydrolase, EC 3.2.1.2) is produced with the non-genetically modified Bacillus flexus strain AE-BAF by Amano Enzyme Inc. A safety evaluation of this food enzyme was made previously, in which EFSA concluded that this food enzyme did not give rise to safety concerns when used in three food manufacturing processes. Subsequently, the applicant requested to extend its use to four additional processes and revised the use levels. In this assessment, EFSA updated the safety evaluation of this food enzyme for use in a total of seven food manufacturing processes. As the food enzyme-total organic solids (TOS) are removed from the final foods in one food manufacturing process, the dietary exposure to the food enzyme-TOS was estimated only for the remaining six processes. The dietary exposure was estimated to be up to 0.247 mg TOS/kg body weight per day in European populations. Based on the data provided for the previous evaluation and the dietary exposure revised in the present evaluation, the Panel concluded that this food enzyme does not give rise to safety concerns under the revised intended conditions of use.

17.
EFSA J ; 22(5): e8781, 2024 May.
Article in English | MEDLINE | ID: mdl-38711806

ABSTRACT

The food enzyme with phospholipase A1 (phosphatidycholine 1-acylhydrolase, EC 3.1.1.32) and lysophospholipase (2-lysophosphatidylcholine acylhydrolase, EC 3.1.1.5) activities is produced with the genetically modified Aspergillus niger strain PLN by DSM. The genetic modifications do not give rise to safety concerns. The food enzyme is free from viable cells of the production organism and its DNA. It is intended to be used for the production of refined edible fats and oils by degumming. Since residual amounts of total organic solids are removed during this process, dietary exposure was not calculated and toxicological studies were considered unnecessary for the assessment of this food enzyme. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and no matches were found. The Panel considered that the risk of allergic reactions upon dietary exposure cannot be excluded, but the likelihood is low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns, under the intended conditions of use.

18.
EFSA J ; 22(5): e8771, 2024 May.
Article in English | MEDLINE | ID: mdl-38812983

ABSTRACT

The food enzyme inulinase (1-ß-d-fructan fructanohydrolase; EC 3.2.1.7) is produced with the non-genetically modified Aspergillus welwitschiae strain NZYM-KF by Novozymes A/S. The food enzyme is free from viable cells of the production organism. It is intended to be used in the processing of fructo-polysaccharides for the production of fructo-oligosaccharides. Since residual amounts of total organic solids (TOS) are removed during the food manufacturing process, toxicological studies other than allergenicity were considered unnecessary and dietary exposure was not calculated. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and two matches with tomato allergens were found. The Panel considered that the risk of allergic reactions upon dietary exposure to this food enzyme, particularly in individuals sensitised to tomato, cannot be excluded, but is expected not to exceed that of tomato. As the prevalence of allergic reactions to tomato is low, also the likelihood of such reactions to occur to the food enzyme is low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns, under the intended conditions of use.

19.
EFSA J ; 22(5): e8779, 2024 May.
Article in English | MEDLINE | ID: mdl-38741669

ABSTRACT

The food enzyme with two declared activities, bacillolysin (EC 3.4.24.28) and subtilisin (EC 3.4.21.62), is produced with the non-genetically modified Bacillus amyloliquefaciens strain AR-383 by AB Enzymes GmbH. The food enzyme is intended to be used in nine food manufacturing processes. Since residual amounts of total organic solids (TOS) are removed in the production of distilled alcohol, dietary exposure was calculated only for the remaining eight food manufacturing processes. Exposure was estimated to be up to 1.958 mg TOS/kg body weight per day in European populations. As the production strain qualifies for the qualified presumption of safety approach to safety assessment and no issues of concern arising from the production process of the food enzyme were identified, the Panel considered that no toxicological studies other than the assessment of allergenicity were necessary. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made, and 30 matches were found, including one food allergen (melon). The Panel considered that, under the intended conditions of use, the risk of allergic reactions by dietary exposure to this food enzyme cannot be excluded, but for individuals sensitised to melon, this would not exceed the risk of consuming melon. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.

20.
EFSA J ; 22(5): e8774, 2024 May.
Article in English | MEDLINE | ID: mdl-38784840

ABSTRACT

The food enzyme cellobiose phosphorylase (cellobiose: phosphate α-d-glucosyltransferase; EC 2.4.1.20) is produced with the genetically modified Escherichia coli strain LE1B109-pPB130 by c-LEcta GmbH. The genetic modifications do not give rise to safety concerns. The food enzyme is considered free from viable cells of the production organism and its DNA. It is intended to be used in combination with a sucrose phosphorylase in the production of the specialty carbohydrate cellobiose. Since residual amounts of total organic solids are removed by downstream purification steps, the Panel considered that toxicological studies other than assessment of allergenicity were unnecessary and a dietary exposure was not estimated. A search for similarity of the amino acid sequence of the food enzyme to known allergens was made and no match was found. The Panel considered that, under the intended conditions of use, the risk of allergic reactions upon dietary exposure cannot be excluded, but the likelihood is low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.

SELECTION OF CITATIONS
SEARCH DETAIL
...