Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 99
Filter
Add more filters










Publication year range
1.
Biochemistry (Mosc) ; 89(2): 223-240, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38622092

ABSTRACT

Worldwide, interest in mitochondria is constantly growing, as evidenced by scientific statistics, and studies of the functioning of these organelles are becoming more prevalent than studies of other cellular structures. In this analytical review, mitochondria are conditionally placed in a certain cellular center, which is responsible for both energy production and other non-energetic functions, without which the existence of not only the eukaryotic cell itself, but also the entire organism is impossible. Taking into account the high multifunctionality of mitochondria, such a fundamentally new scheme of cell functioning organization, including mitochondrial management of processes that determine cell survival and death, may be justified. Considering that this issue is dedicated to the memory of V. P. Skulachev, who can be called mitocentric, due to the history of his scientific activity almost entirely aimed at studying mitochondria, this work examines those aspects of mitochondrial functioning that were directly or indirectly the focus of attention of this outstanding scientist. We list all possible known mitochondrial functions, including membrane potential generation, synthesis of Fe-S clusters, steroid hormones, heme, fatty acids, and CO2. Special attention is paid to the participation of mitochondria in the formation and transport of water, as a powerful biochemical cellular and mitochondrial regulator. The history of research on reactive oxygen species that generate mitochondria is subject to significant analysis. In the section "Mitochondria in the center of death", special emphasis is placed on the analysis of what role and how mitochondria can play and determine the program of death of an organism (phenoptosis) and the contribution made to these studies by V. P. Skulachev.


Subject(s)
Mitochondria , Mitochondria/metabolism , Reactive Oxygen Species/metabolism
2.
Pharmaceutics ; 16(4)2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38675106

ABSTRACT

There is an increasing accumulation of data on the exceptional importance of mitochondria in the occurrence and treatment of cancer, and in all lines of evidence for such participation, there are both energetic and non-bioenergetic functional features of mitochondria. This analytical review examines three specific features of adaptive mitochondrial changes in several malignant tumors. The first feature is characteristic of solid tumors, whose cells are forced to rebuild their energetics due to the absence of oxygen, namely, to activate the fumarate reductase pathway instead of the traditional succinate oxidase pathway that exists in aerobic conditions. For such a restructuring, the presence of a low-potential quinone is necessary, which cannot ensure the conventional conversion of succinate into fumarate but rather enables the reverse reaction, that is, the conversion of fumarate into succinate. In this scenario, complex I becomes the only generator of energy in mitochondria. The second feature is the increased proliferation in aggressive tumors of the so-called mitochondrial (peripheral) benzodiazepine receptor, also called translocator protein (TSPO) residing in the outer mitochondrial membrane, the function of which in oncogenic transformation stays mysterious. The third feature of tumor cells is the enhanced retention of certain molecules, in particular mitochondrially directed cations similar to rhodamine 123, which allows for the selective accumulation of anticancer drugs in mitochondria. These three features of mitochondria can be targets for the development of an anti-cancer strategy.

3.
Int J Mol Sci ; 25(6)2024 Mar 09.
Article in English | MEDLINE | ID: mdl-38542129

ABSTRACT

The positive effects of female sex hormones, particularly estradiol and progesterone, have been observed in treatment of various pathologies. Acute kidney injury (AKI) is a common condition in hospitalized patients in which the molecular mechanisms of hormone action are poorly characterized. In this study, we investigated the influence of estradiol and progesterone on renal cells during ischemic injury. We performed both in vivo experiments on female and male rats and in vitro experiments on renal tubular cells (RTCs) obtained from the kidneys of intact animals of different sexes. Since mitochondria play an important role in the pathogenesis of AKI, we analyzed the properties of individual mitochondria in renal cells, including the area, roundness, mitochondrial membrane potential, and mitochondrial permeability transition pore (mPTP) opening time. We found that pre-treatment with progesterone or estradiol attenuated the severity of ischemia/reperfusion (I/R)-induced AKI in female rats, whereas in male rats, these hormones exacerbated renal dysfunction. We demonstrated that the mPTP opening time was higher in RTCs from female rats than that in those from male rats, which may be one of the reasons for the higher tolerance of females to ischemic injury. In RTCs from the kidneys of male rats, progesterone caused mitochondrial fragmentation, which can be associated with reduced cell viability. Thus, therapy with progesterone or estradiol displays quite different effects depending on sex, and could be only effective against ischemic AKI in females.


Subject(s)
Acute Kidney Injury , Reperfusion Injury , Humans , Rats , Male , Female , Animals , Progesterone/adverse effects , Estradiol/adverse effects , Kidney/pathology , Ischemia/complications , Reperfusion Injury/pathology , Acute Kidney Injury/etiology
4.
Int J Mol Sci ; 25(3)2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38338779

ABSTRACT

The development of drugs for the treatment of acute kidney injury (AKI) that could suppress the excessive inflammatory response in damaged kidneys is an important clinical challenge. Recently, synaptamide (N-docosahexaenoylethanolamine) has been shown to exert anti-inflammatory and neurogenic properties. The aim of this study was to investigate the anti-inflammatory effect of synaptamide in ischemic AKI. For this purpose, we analyzed the expression of inflammatory mediators and the infiltration of different leukocyte populations into the kidney after injury, evaluated the expression of the putative synaptamide receptor G-protein-coupled receptor 110 (GPR110), and isolated a population of CD11b/c+ cells mainly representing neutrophils and macrophages using cell sorting. We also evaluated the severity of AKI during synaptamide therapy and the serum metabolic profile. We demonstrated that synaptamide reduced the level of pro-inflammatory interleukins and the expression of integrin CD11a in kidney tissue after injury. We found that the administration of synaptamide increased the expression of its receptor GPR110 in both total kidney tissue and renal CD11b/c+ cells that was associated with the reduced production of pro-inflammatory interleukins in these cells. Thus, we demonstrated that synaptamide therapy mitigates the inflammatory response in kidney tissue during ischemic AKI, which can be achieved through GPR110 signaling in neutrophils and a reduction in these cells' pro-inflammatory interleukin production.


Subject(s)
Acute Kidney Injury , Ethanolamines , Receptors, G-Protein-Coupled , Reperfusion Injury , Animals , Rats , Acute Kidney Injury/drug therapy , Acute Kidney Injury/metabolism , Anti-Inflammatory Agents/metabolism , Interleukins/metabolism , Kidney/metabolism , Receptors, G-Protein-Coupled/drug effects , Receptors, G-Protein-Coupled/metabolism , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism
5.
Int J Mol Sci ; 25(4)2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38396712

ABSTRACT

Hypoxic-ischemic encephalopathy (HIE) is one of the most common causes of childhood disability. Hypothermic therapy is currently the only approved neuroprotective approach. However, early diagnosis of HIE can be challenging, especially in the first hours after birth when the decision to use hypothermic therapy is critical. Distinguishing HIE from other neonatal conditions, such as sepsis, becomes a significant problem in diagnosis. This study explored the utility of a metabolomic-based approach employing the NeoBase 2 MSMS kit to diagnose HIE using dry blood stains in a Rice-Vannucci model of HIE in rats. We evaluated the diagnostic fidelity of this approach in a range between 3 and 6 h after the onset of HIE, including in the context of systemic inflammation and concomitant hypothermic therapy. Discriminant analysis revealed several metabolite patterns associated with HIE. A logistic regression model using glycine levels achieved high diagnostic fidelity with areas under the receiver operating characteristic curve of 0.94 at 3 h and 0.96 at 6 h after the onset of HIE. In addition, orthogonal partial least squares discriminant analysis, which included five metabolites, achieved 100% sensitivity and 80% specificity within 3 h of HIE. These results highlight the significant potential of the NeoBase 2 MSMS kit for the early diagnosis of HIE and could improve patient management and outcomes in this serious illness.


Subject(s)
Hypoxia-Ischemia, Brain , Humans , Rats , Animals , Hypoxia-Ischemia, Brain/metabolism , Metabolomics/methods , Biomarkers
6.
Life Sci ; 338: 122359, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38135115

ABSTRACT

AIM: Neonatal sepsis remains one of the most dangerous conditions in the neonatal intensive care units. One of the organs affected by sepsis is the kidney, making acute kidney injury (AKI) a common complication of sepsis. Treatment of sepsis almost always involves antibiotic therapy, which by itself may cause some adverse effects, including nephrotoxicity. We analyzed the mutual effect of antibiotic therapy and sepsis on AKI in an experimental and clinical study in infants and neonatal rats. MATERIALS AND METHODS: We evaluated the influence of therapy with different antibiotics on the appearance of AKI markers (blood urea nitrogen (BUN), neutrophil gelatinase-associated lipocalin (NGAL), clusterin, interleukin-18 (IL-18), kidney injury molecule-1 (KIM-1), monocyte chemoattractant protein 1 (MCP-1), calbindin, glutation-S-transferase subtype π (GST-π)) and liver injury markers in newborns with or without clinical signs of sepsis in the intensive care unit. In parallel, we analyzed the development of AKI in experimental lipopolysaccharide (LPS)-induced systemic inflammation in newborn rats accompanied by antibiotic therapy. KEY FINDINGS: We showed that therapy with metronidazole or ampicillin in combination with sulbactam had a beneficial effect in children with suspected sepsis, resulting in a decrease in AKI markers levels. However, treatment of newborns with netilmicin, cefepime, linezolid, or imipenem in combination with cilastatin worsened kidney function in these patients. SIGNIFICANCE: This prospective study indicates which antibiotics are preferable in neonatal sepsis and which should be used with caution in view of the risk of AKI development.


Subject(s)
Acute Kidney Injury , Neonatal Sepsis , Sepsis , Humans , Infant , Child , Rats , Animals , Neonatal Sepsis/complications , Neonatal Sepsis/drug therapy , Prospective Studies , Acute Kidney Injury/drug therapy , Acute Kidney Injury/etiology , Anti-Bacterial Agents/therapeutic use , Sepsis/complications , Sepsis/drug therapy , Biomarkers
7.
Biochemistry (Mosc) ; 88(10): 1596-1607, 2023 Oct.
Article in English | MEDLINE | ID: mdl-38105027

ABSTRACT

Mitochondria in a cell can unite and organize complex, extended structures that occupy the entire cellular volume, providing an equal supply with energy in the form of ATP synthesized in mitochondria. In accordance with the chemiosmotic concept, the oxidation energy of respiratory substrates is largely stored in the form of an electrical potential difference on the inner membrane of mitochondria. The theory of the functioning of extended mitochondrial structures as intracellular electrical wires suggests that mitochondria provide the fastest delivery of electrical energy through the cellular volume, followed by the use of this energy for the synthesis of ATP, thereby accelerating the process of ATP delivery compared to the rather slow diffusion of ATP in the cell. This analytical review gives the history of the cable theory, lists unsolved critical problems, describes the restructuring of the mitochondrial network and the role of oxidative stress in this process. In addition to the already proven functioning of extended mitochondrial structures as electrical cables, a number of additional functions are proposed, in particular, the hypothesis is put forth that mitochondrial networks maintain the redox potential in the cellular volume, which may vary depending on the physiological state, as a result of changes in the three-dimensional organization of the mitochondrial network (fragmentation/fission-fusion). A number of pathologies accompanied by a violation of the redox status and the participation of mitochondria in them are considered.


Subject(s)
Mitochondria , Oxidative Stress , Mitochondria/metabolism , Oxidation-Reduction , Adenosine Triphosphate/metabolism
8.
Antioxidants (Basel) ; 12(8)2023 Aug 12.
Article in English | MEDLINE | ID: mdl-37627599

ABSTRACT

The development of liver fibrosis is one of the most severe and life-threatening outcomes of chronic liver disease (CLD). For targeted therapy of CLD, it is highly needed to reveal molecular targets for normalizing metabolic processes impaired in damaged liver and associated with fibrosis. In this study, we investigated the morphological and biochemical changes in rat liver models of fibrosis induced by chronic administration of thioacetamide, carbon tetrachloride, bile duct ligation (BDL), and ischemia/reperfusion (I/R), with a specific focus on carbohydrate and energy metabolism. Changes in the levels of substrates and products, as well as enzyme activities of the major glucose metabolic pathways (glycolysis, glucuronidation, and pentose phosphate pathway) were examined in rat liver tissue after injury. We examined key markers of oxidative energy metabolism, such as the activity of the Krebs cycle enzymes, and assessed mitochondrial respiratory activity. In addition, pro- and anti-oxidative status was assessed in fibrotic liver tissue. We found that 6 weeks of exposure to thioacetamide, carbon tetrachloride, BDL or I/R resulted in a decrease in the activity of glycolytic enzymes, retardation of mitochondrial respiration, elevation of glucuronidation, and activation of pentose phosphate pathways, accompanied by a decrease in antioxidant activity and the onset of oxidative stress in rat liver. Resemblance and differences in the changes in the fibrosis models used are described, including energy metabolism alterations and antioxidant status in the used fibrosis models. The least pronounced changes in glucose metabolism and mitochondrial functions in the I/R and thioacetamide models were associated with the least advanced fibrosis. Ultimately, liver fibrosis significantly altered the metabolic profile in liver tissue and the flux of glucose metabolic pathways, which could be the basis for targeted therapy of liver fibrosis in CLD caused by toxic, cholestatic, or I/R liver injury.

9.
Biochemistry (Mosc) ; 88(2): 189-201, 2023 Feb.
Article in English | MEDLINE | ID: mdl-37072326

ABSTRACT

Dystrophin-deficient muscular dystrophy (Duchenne dystrophy) is characterized by impaired ion homeostasis, in which mitochondria play an important role. In the present work, using a model of dystrophin-deficient mdx mice, we revealed decrease in the efficiency of potassium ion transport and total content of this ion in the heart mitochondria. We evaluated the effect of chronic administration of the benzimidazole derivative NS1619, which is an activator of the large-conductance Ca2+-dependent K+ channel (mitoBKCa), on the structure and function of organelles and the state of the heart muscle. It was shown that NS1619 improves K+ transport and increases content of the ion in the heart mitochondria of mdx mice, but this is not associated with the changes in the level of mitoBKCa protein and expression of the gene encoding this protein. The effect of NS1619 was accompanied by the decrease in the intensity of oxidative stress, assessed by the level of lipid peroxidation products (MDA products), and normalization of the mitochondrial ultrastructure in the heart of mdx mice. In addition, we found positive changes in the tissue manifested by the decrease in the level of fibrosis in the heart of dystrophin-deficient animals treated with NS1619. It was noted that NS1619 had no significant effect on the structure and function of heart mitochondria in the wild-type animals. The paper discusses mechanisms of influence of NS1619 on the function of mouse heart mitochondria in Duchenne muscular dystrophy and prospects for applying this approach to correct pathology.


Subject(s)
Calcium , Dystrophin , Mice , Animals , Dystrophin/genetics , Dystrophin/metabolism , Calcium/metabolism , Mice, Inbred mdx , Benzimidazoles/pharmacology , Benzimidazoles/metabolism , Mitochondria, Heart/metabolism
10.
Antioxidants (Basel) ; 12(3)2023 Mar 04.
Article in English | MEDLINE | ID: mdl-36978894

ABSTRACT

The homeostasis of the transmembrane potential of hydrogen ions in mitochondria is a prerequisite for the normal mitochondrial functioning. However, in different pathological conditions it is advisable to slightly reduce the membrane potential, while maintaining it at levels sufficient to produce ATP that will ensure the normal functioning of the cell. A number of chemical agents have been found to provide mild uncoupling; however, natural proteins residing in mitochondrial membrane can carry this mission, such as proteins from the UCP family, an adenine nucleotide translocator and a dicarboxylate carrier. In this study, we demonstrated that the butyl ester of rhodamine 19, C4R1, binds to the components of the mitochondrial ATP synthase complex due to electrostatic interaction and has a good uncoupling effect. The more hydrophobic derivative C12R1 binds poorly to mitochondria with less uncoupling activity. Mass spectrometry confirmed that C4R1 binds to the ß-subunit of mitochondrial ATP synthase and based on molecular docking, a C4R1 binding model was constructed suggesting the binding site on the interface between the α- and ß-subunits, close to the anionic amino acid residues of the ß-subunit. The association of the uncoupling effect with binding suggests that the ATP synthase complex can provide induced uncoupling.

11.
Int J Mol Sci ; 24(3)2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36768899

ABSTRACT

The ketogenic diet (KD) has been used as a treatment for epilepsy since the 1920s, and its role in the prevention of many other diseases is now being considered. In recent years, there has been an intensive investigation on using the KD as a therapeutic approach to treat acute pathologies, including ischemic ones. However, contradictory data are observed for the effects of the KD on various organs after ischemic injury. In this review, we provide the first systematic analysis of studies conducted from 1980 to 2022 investigating the effects and main mechanisms of the KD and its mimetics on ischemia-reperfusion injury of the brain, heart, kidneys, liver, gut, and eyes. Our analysis demonstrated a high diversity of both the composition of the used KD and the protocols for the treatment of animals, which could be the reason for contradictory effects in different studies. It can be concluded that a true KD or its mimetics, such as ß-hydroxybutyrate, can be considered as positive exposure, protecting the organ from ischemia and its negative consequences, whereas the shift to a rather similar high-calorie or high-fat diet leads to the opposite effect.


Subject(s)
Diet, Ketogenic , Epilepsy , Animals , Ketone Bodies/therapeutic use , Diet, Ketogenic/methods , Epilepsy/drug therapy , Brain , Ischemia/drug therapy
12.
Biochim Biophys Acta Mol Basis Dis ; 1869(3): 166622, 2023 03.
Article in English | MEDLINE | ID: mdl-36526237

ABSTRACT

Acute kidney injury (AKI) is a frequent pathology with a high mortality rate after even a single AKI episode and a great risk of chronic kidney disease (CKD) development. To get insight into mechanisms of the AKI pathogenesis, there is a need to develop diverse experimental models of the disease. Photothrombosis is a widely used method for inducing ischemia in the brain. In this study, for the first time, we described photothrombosis-induced kidney ischemia as an appropriate model of AKI and obtained comprehensive characteristics of the photothrombotic lesion using micro-computed tomography (micro-CT) and histological techniques. In the ischemic area, we observed destruction of tubules, the loss of brush border and nuclei, connective tissue fibers disorganization, leukocyte infiltration, and hyaline casts formation. In kidney tissue and urine, we revealed increased levels in markers of proliferation and injury. The explicit long-term consequence of photothrombosis-induced kidney ischemia was renal fibrosis. Thus, we establish a new low invasive experimental model of AKI, which provides a reproducible local ischemic injury lesion. We propose our model of photothrombosis-induced kidney ischemia as a useful approach for investigating AKI pathogenesis, studying the mechanisms of kidney regeneration, and development of therapy against AKI and CKD.


Subject(s)
Acute Kidney Injury , Renal Insufficiency, Chronic , Reperfusion Injury , Humans , Kidney/pathology , X-Ray Microtomography/adverse effects , Reperfusion Injury/pathology , Regeneration , Renal Insufficiency, Chronic/etiology , Renal Insufficiency, Chronic/pathology , Acute Kidney Injury/pathology , Ischemia/pathology
13.
Int J Mol Sci ; 23(23)2022 Dec 03.
Article in English | MEDLINE | ID: mdl-36499550

ABSTRACT

Kidney diseases belong to a group of pathologies, which are most common among elderly people. With age, even outwardly healthy organisms start to exhibit some age-related changes in the renal tissue, which reduce the filtration function of kidneys and increase the susceptibility to injury. The therapy of acute kidney injury (AKI) is aggravated by the absence of targeted pharmacotherapies thus yielding high mortality of patients with AKI. In this study, we analyzed the protective effects of calorie restriction (CR) against ischemic AKI in senescence-accelerated OXYS rats. We observed that CR afforded OXYS rats with significant nephroprotection. To uncover molecular mechanisms of CR beneficial effects, we assessed the levels of anti- and proapoptotic proteins of the Bcl-2 family, COX IV, GAPDH, and mitochondrial deacetylase SIRT-3, as well as alterations in total protein acetylation and carbonylation, mitochondrial dynamics (OPA1, Fis1, Drp1) and kidney regeneration pathways (PCNA, GDF11). The activation of autophagy and mitophagy was analyzed by LC3 II/LC3 I ratio, beclin-1, PINK-1, and total mitochondrial protein ubiquitination. Among all considered protective pathways, the improvement of mitochondrial functioning may be suggested as one of the possible mechanisms for beneficial effects of CR.


Subject(s)
Acute Kidney Injury , Reperfusion Injury , Rats , Animals , Kidney/metabolism , Caloric Restriction , Regeneration , Mitophagy , Mitochondria/metabolism , Acute Kidney Injury/metabolism , Ischemia/metabolism , Reperfusion Injury/metabolism , Growth Differentiation Factors/metabolism
14.
Int J Mol Sci ; 23(19)2022 Sep 20.
Article in English | MEDLINE | ID: mdl-36232326

ABSTRACT

The decrease in the number of resident progenitor cells with age was shown for several organs. Such a loss is associated with a decline in regenerative capacity and a greater vulnerability of organs to injury. However, experiments evaluating the number of progenitor cells in the kidney during aging have not been performed until recently. Our study tried to address the change in the number of renal progenitor cells with age. Experiments were carried out on young and old transgenic nestin-green fluorescent protein (GFP) reporter mice, since nestin is suggested to be one of the markers of progenitor cells. We found that nestin+ cells in kidney tissue were located in the putative niches of resident renal progenitor cells. Evaluation of the amount of nestin+ cells in the kidneys of different ages revealed a multifold decrease in the levels of nestin+ cells in old mice. In vitro experiments on primary cultures of renal tubular cells showed that all cells including nestin+ cells from old mice had a lower proliferation rate. Moreover, the resistance to damaging factors was reduced in cells obtained from old mice. Our data indicate the loss of resident progenitor cells in kidneys and a decrease in renal cells proliferative capacity with aging.


Subject(s)
Kidney , Stem Cells , Animals , Green Fluorescent Proteins/metabolism , Kidney/metabolism , Mice , Mice, Transgenic , Nestin/genetics , Nestin/metabolism , Stem Cells/metabolism
15.
Antioxidants (Basel) ; 11(10)2022 Sep 27.
Article in English | MEDLINE | ID: mdl-36290634

ABSTRACT

One of the causes of death of patients infected by SARS-CoV-2 is the induced respiratory failure caused by excessive activation of the immune system, the so-called "cytokine storm", leading to damage to lung tissue. In vitro models reproducing various stages of the disease can be used to explore the pathogenetic mechanisms and therapeutic approaches to treating the consequences of a cytokine storm. We have developed an in vitro test system for simulating damage to the pulmonary epithelium as a result of the development of a hyperinflammatory reaction based on the co-cultivation of pulmonary epithelial cells (A549 cells) and human peripheral blood mononuclear cells (PBMC) primed with lipopolysaccharide (LPS). In this model, after 24 h of co-cultivation, a sharp decrease in the rate of proliferation of A549 cells associated with the intrinsic development of oxidative stress and, ultimately, with the induction of PANoptotic death were observed. There was a significant increase in the concentration of 40 cytokines/chemokines in a conditioned medium, including TNF-α, IFN-α, IL-6, and IL-1a, which corresponded to the cytokine profile in patients with severe manifestation of COVID-19. In order to verify the model, the analysis of the anti-inflammatory effects of well-known substances (dexamethasone, LPS from Rhodobacter sphaeroides (LPS-RS), polymyxin B), as well as multipotent mesenchymal stem cells (MSC) and MSC-derived extracellular vesicles (EVs) was carried out. Dexamethasone and polymyxin B restored the proliferative activity of A549 cells and reduced the concentration of proinflammatory cytokines. MSC demonstrated an ambivalent effect through stimulated production of both pro-inflammatory cytokines and growth factors that regenerate lung tissue. LPS-RS and EVs showed no significant effect. The developed test system can be used to study molecular and cellular pathological processes and to evaluate the effectiveness of various therapeutic approaches for the correction of hyperinflammatory response in COVID-19 patients.

16.
Biochemistry (Mosc) ; 87(8): 683-688, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36171650

ABSTRACT

The conclusions made in the three papers published in Function by Juhaszova et al. [Function, 3, 2022, zqab065, zqac001, zqac018], can be seen as a breakthrough in bioenergetics and mitochondrial medicine. For more than half a century, it has been believed that mitochondrial energetics is solely protonic and is based on the generation of electrochemical potential of hydrogen ions across the inner mitochondrial membrane upon oxidation of respiratory substrates, resulting in the generation of ATP via reverse transport of protons through the ATP synthase complex. Juhaszova et al. demonstrated that ATP synthase transfers not only protons, but also potassium ions, with the generation of ATP. This mechanism seems logical, given the fact that in eukaryotic cells, the concentration of potassium ions is several million times higher than the concentration of protons. The transport of K+ through the ATP synthase was enhanced by the activators of mitochondrial ATP-dependent K+ channel (mK/ATP), leading to the conclusion that ATP synthase is the material essence of mK/ATP. Beside ATP generation, the transport of osmotically active K+ to the mitochondrial matrix is accompanied by water entry to the matrix, leading to an increase in the matrix volume and activation of mitochondrial respiration with the corresponding increase in the ATP synthesis, which suggests an advantage of such transport for energy production. The driving force for K+ transport into the mitochondria is the membrane potential; an excess of K+ is exported from the matrix by the hypothetical K+/H+ exchangers. Inhibitory factor 1 (IF1) plays an important role in the activation of mK/ATP by increasing the chemo-mechanical efficiency of ATP synthase, which may be a positive factor in the protective anti-ischemic signaling.


Subject(s)
Potassium , Protons , Adenosine Triphosphate , Mitochondria/metabolism , Potassium/metabolism , Potassium Channels/physiology , Water
17.
Int J Biol Sci ; 18(14): 5345-5368, 2022.
Article in English | MEDLINE | ID: mdl-36147480

ABSTRACT

Mesenchymal stromal cells (MSC) are widely recognized as potential effectors in neuroprotective therapy. The protective properties of MSC were considered to be associated with the secretion of extracellular vesicles (MSC-EV). We explored the effects of MSC-EV in vivo on models of traumatic and hypoxia-ischemia (HI) brain injury. Neuroprotective mechanisms triggered by MSC-EV were also studied in vitro using a primary neuroglial culture. Intranasal administration of MSC-EV reduced the volume of traumatic brain damage, correlating with a recovery of sensorimotor functions. Neonatal HI-induced brain damage was mitigated by the MSC-EV administration. This therapy also promoted the recovery of sensorimotor functions, implying enhanced neuroplasticity, and MSC-EV-induced growth of neurites in vitro supports this. In the in vitro ischemic model, MSC-EV prevented cell calcium (Ca2+) overload and subsequent cell death. In mixed neuroglial culture, MSC-EV induced inositol trisphosphate (IP3) receptor-related Ca2+ oscillations in astrocytes were associated with resistance to calcium overload not only in astrocytes but also in co-cultured neurons, demonstrating intercellular positive crosstalk between neural cells. This implies that phosphatidylinositol 3-Kinase/AKT signaling is one of the main pathways in MSC-EV-mediated protection of neural cells exposed to ischemic challenge. Components of this pathway were identified among the most enriched categories in the MSC-EV proteome.


Subject(s)
Extracellular Vesicles , Hypoxia-Ischemia, Brain , Mesenchymal Stem Cells , Animals , Calcium/metabolism , Calcium Signaling , Extracellular Vesicles/metabolism , Humans , Hypoxia-Ischemia, Brain/metabolism , Infant, Newborn , Inositol/metabolism , Ischemia/therapy , Mesenchymal Stem Cells/metabolism , Neuroprotection , Phosphatidylinositol 3-Kinases/metabolism , Proteome/metabolism , Proto-Oncogene Proteins c-akt/metabolism
18.
Int J Mol Sci ; 23(16)2022 Aug 13.
Article in English | MEDLINE | ID: mdl-36012332

ABSTRACT

The reason for the exceptional longevity of the naked mole rat (Heterocephalus glaber) remains a mystery to researchers. We assumed that evolutionarily, H. glaber acquired the ability to quickly stabilize the functioning of mitochondria and endoplasmic reticulum (ER) to adjust metabolism to external challenges. To test this, a comparison of the hepatic mitochondria and ER of H. glaber and C57BL/6 mice was done. Electron microscopy showed that 2-months-old mice have more developed rough ER (RER) than smooth ER (SER), occupying ~17 and 2.5% of the hepatocytic area correspondingly, and these values do not change with age. On the other hand, in 1-week-old H. glaber, RER occupies only 13% constantly decreasing with age, while SER occupies 35% in a 1-week-old animal, constantly rising with age. The different localization of mitochondria in H. glaber and mouse hepatocytes was confirmed by confocal and electron microscopy: while in H. glaber, mitochondria were mainly clustered around the nucleus and on the periphery of the cell, in mouse hepatocytes they were evenly distributed throughout the cell. We suggest that the noted structural and spatial features of ER and mitochondria in H. glaber reflect adaptive rearrangements aimed at greater tolerance of the cellular system to challenges, primarily hypoxia and endogenous and exogenous toxins. Different mechanisms of adaptive changes including an activated hepatic detoxification system as a hormetic response, are discussed considering the specific metabolic features of the naked mole rat.


Subject(s)
Mitochondria , Mole Rats , Animals , Endoplasmic Reticulum , Hepatocytes , Hypertrophy , Mice , Mice, Inbred C57BL
19.
Int J Mol Sci ; 23(13)2022 Jul 03.
Article in English | MEDLINE | ID: mdl-35806411

ABSTRACT

Extracellular vesicles (EV) derived from stem cells have become an effective complement to the use in cell therapy of stem cells themselves, which has led to an explosion of research into the mechanisms of vesicle formation and their action. There is evidence demonstrating the presence of mitochondrial components in EV, but a definitive conclusion about whether EV contains fully functional mitochondria has not yet been made. In this study, two EV fractions derived from mesenchymal stromal stem cells (MSC) and separated by their size were examined. Flow cytometry revealed the presence of mitochondrial lipid components capable of interacting with mitochondrial dyes MitoTracker Green and 10-nonylacridine orange; however, the EV response to the probe for mitochondrial membrane potential was negative. Detailed analysis revealed components from all mitochondria compartments, including house-keeping mitochondria proteins and DNA as well as energy-related proteins such as membrane-localized proteins of complexes I, IV, and V, and soluble proteins from the Krebs cycle. When assessing the functional activity of mitochondria, high variability in oxygen consumption was noted, which was only partially attributed to mitochondrial respiratory activity. Our findings demonstrate that the EV contain all parts of mitochondria; however, their independent functionality inside EV has not been confirmed, which may be due either to the absence of necessary cofactors and/or the EV formation process and, probably the methodology of obtaining EV.


Subject(s)
Extracellular Vesicles , Mesenchymal Stem Cells , Extracellular Vesicles/metabolism , Flow Cytometry , Mesenchymal Stem Cells/metabolism , Mitochondria
20.
Cells ; 11(9)2022 04 21.
Article in English | MEDLINE | ID: mdl-35563713

ABSTRACT

Traumatic brain injury (TBI) heavily impacts the body: it damages the brain tissue and the peripheral nervous system and shifts homeostasis in many types of tissue. An acute brain injury compromises the "brain-gut-microbiome axis", a well-balanced network formed by the brain, gastrointestinal tract, and gut microbiome, which has a complex effect: damage to the brain alters the composition of the microbiome; the altered microbiome affects TBI severity, neuroplasticity, and metabolic pathways through various bacterial metabolites. We modeled TBI in rats. Using a bioinformatics approach, we sought to identify correlations between the gut microbiome composition, TBI severity, the rate of neurological function recovery, and blood metabolome. We found that the TBI caused changes in the abundance of 26 bacterial genera. The most dramatic change was observed in the abundance of Agathobacter species. The TBI also altered concentrations of several metabolites, specifically citrulline and tryptophan. We found no significant correlations between TBI severity and the pre-existing gut microbiota composition or blood metabolites. However, we discovered some differences between the two groups of subjects that showed high and low rates of neurological function recovery, respectively. The present study highlights the role of the brain-gut-microbiome axis in TBI.


Subject(s)
Brain Injuries, Traumatic , Gastrointestinal Microbiome , Microbiota , Amino Acids , Animals , Bacteria , Brain/metabolism , Brain Injuries, Traumatic/metabolism , Gastrointestinal Microbiome/physiology , Humans , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...