Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 23(65): 16660-16670, 2017 Nov 21.
Article in English | MEDLINE | ID: mdl-28971546

ABSTRACT

The complex structure of a plutonium uranium refining by extraction (PUREX) process organic phase was characterized by combining results from experiments and molecular dynamics simulations. For the first time, the molecular interactions between tri-n-butyl phosphate (TBP) and the extracted solutes, as well as TBP aggregation after the extraction of water and/or uranyl nitrate, were described and analyzed concomitantly. Coupling molecular dynamics simulations with small- and wide-angle X-ray scattering (SWAXS) experiments can lead to simulated organic solutions that are representative of the experimental ones, even for high extractant and solute concentrations. Furthermore, this coupling is well adapted for the interpretation of SWAXS experiments without preliminary hypothesis on the size or shape of aggregates. The results link together previous literature studies obtained for each level of depiction separately (complexation or aggregation). Without uranium, or at low metal concentration, almost no aggregation was observed. At high uranium concentration, organic phases contain small [UO2 (NO3 )2 (TBP)2 ]n polymetallic aggregates (with n=2 to 4), in which the 1:2 U/TBP stoichiometry is preserved.

2.
Phys Chem Chem Phys ; 17(15): 9942-50, 2015 Apr 21.
Article in English | MEDLINE | ID: mdl-25783464

ABSTRACT

Several lanthanide and actinide tetranitrate ions, M(III)(NO3)4(-), were produced by electrospray ionization and subjected to collision induced dissociation in quadrupole ion trap mass spectrometers. The nature of the MO(NO3)3(-) products that result from NO2 elimination was evaluated by measuring the relative hydrolysis rates under thermalized conditions. Based on the experimental results it is inferred that the hydrolysis rates relate to the intrinsic stability of the M(IV) oxidation states, which correlate with both the solution IV/III reduction potentials and the fourth ionization energies. Density functional theory computations of the energetics of hydrolysis and atoms-in-molecules bonding analysis of representative oxide and hydroxide nitrates substantiate the interpretations. The results allow differentiation between those MO(NO3)3(-) that comprise an O(2-) ligand with oxidation to M(IV) and those that comprise a radical O(-) ligand with retention of the M(III) oxidation state. In the particular cases of MO(NO3)3(-) for M = Pr, Nd and Tb it is proposed that the oxidation states are intermediate between M(III) and M(IV).

3.
Chemistry ; 20(40): 12796-807, 2014 Sep 26.
Article in English | MEDLINE | ID: mdl-25169678

ABSTRACT

Combining experiment with theory reveals the role of self-assembly and complexation in metal-ion transfer through the water-oil interface. The coordinating metal salt Eu(NO3)3 was extracted from water into oil by a lipophilic neutral amphiphile. Molecular dynamics simulations were coupled to experimental spectroscopic and X-ray scattering techniques to investigate how local coordination interactions between the metal ion and ligands in the organic phase combine with long-range interactions to produce spontaneous changes in the solvent microstructure. Extraction of the Eu(3+)-3(NO3(-)) ion pairs involves incorporation of the "hard" metal complex into the core of "soft" aggregates. This seeds the formation of reverse micelles that draw the water and "free" amphiphile into nanoscale hydrophilic domains. The reverse micelles interact through attractive van der Waals interactions and coalesce into rod-shaped polynuclear Eu(III) -containing aggregates with metal centers bridged by nitrate. These preorganized hydrophilic domains, containing high densities of O-donor ligands and anions, provide improved Eu(III) solvation environments that help drive interfacial transfer, as is reflected by the increasing Eu(III) partitioning ratios (oil/aqueous) despite the organic phase approaching saturation. For the first time, this multiscale approach links metal-ion coordination with nanoscale structure to reveal the free-energy balance that drives the phase transfer of neutral metal salts.

4.
Int J Radiat Biol ; 90(11): 966-74, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24499480

ABSTRACT

PURPOSE: The actinides are chemical poisons and radiological hazards. One challenge to better appraise their toxicity and develop countermeasures in case of exposure of living organisms is to better assess pathways of contamination. Because of the high chemical affinity of those actinide elements for phosphate groups and the ubiquity of such chemical functions in biochemistry, nucleotides and in particular adenosine triphosphate nucleotide (ATP) may be considered critical target building blocks for actinides. MATERIALS AND METHODS: Combinations of spectroscopic techniques (Fourier transformed Infra Red [FTIR], Electrospray Ionization Mass Spectrometry [ESI-MS], and Extended X-ray Absorption Fine Structure [EXAFS]) with quantum chemical calculations have been implemented in order to assess the actinides coordination arrangement with ATP. RESULTS: We describe and compare herein the interaction of ATP with thorium and americium; thorium(IV) as a representative of actinide(IV) like plutonium(IV) and americium(III) as a representative of all heavier actinides. In the case of thorium, an insoluble complex is readily formed. In the case of americium, a behavior identical to that described previously for lutetium has been observed with insoluble and soluble complexes. CONCLUSIONS: The comparative study of ATP complexation with Th(IV) and Am(III) shows their ability to form insoluble complexes for which a structural model has been proposed by analogy with previously described Lu(III) complexes.


Subject(s)
Adenosine Triphosphate/chemistry , Americium/chemistry , Thorium/chemistry , Actinoid Series Elements/chemistry , Plutonium/chemistry , Radiation Injuries/prevention & control , Radiation Protection , Spectrometry, Mass, Electrospray Ionization , Spectroscopy, Fourier Transform Infrared , X-Rays
5.
Dalton Trans ; (32): 6421-30, 2009 Aug 28.
Article in English | MEDLINE | ID: mdl-19655077

ABSTRACT

Solvents intended for the separation of trivalent actinides from trivalent lanthanides in spent nuclear fuel have been irradiated with gamma-radiation. The solvents initially contained 0.005 M C5-BTBP dissolved in either hexanol or cyclohexanone and they were exposed to doses up to 20 kGy. Identification of degradation products was done using atmospheric pressure chemical ionization-mass spectrometry (APCI-MS). Structures were suggested for a number of degradation products and the relative intensity of the peaks in the MS spectra was estimated. It was clear that the content of the original molecule, C5-BTBP, decreased with dose, while the content of the various degradation products increased. It was also shown that both the choice of diluent and the dose rate (Gy/h) affect the amount of degradation products formed. A degradation scheme was proposed for the radiolytic degradation of C5-BTBP.

6.
Dalton Trans ; (7): 924-31, 2008 Feb 21.
Article in English | MEDLINE | ID: mdl-18259626

ABSTRACT

The stability of the ionic liquid [MeBu3N][Tf2N], dry or after contact with water (where [MeBu3N]+ is the methyltributylammonium cation and [Tf2N](-) is the bistriflimide anion), was studied under 137Cs gamma irradiation in argon and in air. In a quantitative study with an absorbed dose of 2 MGy this ionic liquid was highly stable regardless of the radiolysis conditions. The radiolytic disappearance yields determined by ESI-MS were -0.38 and -0.25 micromol J(-1) for the cation and anion, respectively. ESI-MS, NMR, and liquid chromatography coupled with ESI-MS identified a large number of degradation products in very small quantities for the same dose. The cation radicals were formed by the loss of a Bu group, the Me group, or two H atoms to form a double bond with the butyl chain. Radiolysis of the anion produced mainly F and CF3 radicals. The anion radicals recombined with the cation to form a wide range of secondary degradation products regardless of the radiolysis conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...