Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters











Publication year range
1.
Foods ; 13(13)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38998613

ABSTRACT

Adulteration of high-value agricultural products is a critical issue worldwide for consumers and industries. Discrimination of the geographical origin can verify food authenticity by reducing risk and detecting adulteration. Between agricultural products, beans are a very important crop cultivated worldwide that provides food rich in iron and vitamins, especially for people in third-world countries. The aim of this study is the construction of a map of the locally characteristic isotopic fingerprint of giant beans, "Fasolia Gigantes-Elefantes PGI", a Protected Geographical Indication product cultivated in the region of Kastoria and Prespes, Western Macedonia, Greece, with the ultimate goal of the discrimination of beans from the two areas. In total, 160 samples were collected from different fields in the Prespes region and 120 samples from Kastoria during each cultivation period (2020-2021 and 2021-2022). The light element (C, N, and S) isotope ratios were measured using Isotope Ratio Mass Spectrometry (IRMS), and the results obtained were analyzed using chemometric techniques, including a one-way ANOVA and Binomial logistic regression. The mean values from the one-way ANOVA were δ15NAIR = 1.875‱, δ13CV-PDB = -25.483‱, and δ34SV-CDT = 4.779‱ for Kastoria and δ15NAIR = 1.654‱, δ13CV-PDB = -25.928‱, and δ34SV-CDT = -0.174‱ for Prespes, and showed that stable isotope ratios of C and S were statistically different for the areas studied while the Binomial logistic regression analysis that followed correctly classified more than 78% of the samples.

2.
Life (Basel) ; 14(1)2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38255743

ABSTRACT

Olive trees have a unique reproductive pattern marked by biennial fruiting. This study examined the repercussions of alternate fruit bearing on the water relations of olive trees and the associated ecophysiological mechanisms. The experiment spanned two consecutive years: the "ON" year, characterized by a high crop load, and the "OFF" year, marked by minimal fruit production. Key ecophysiological parameters, including sap flow, stomatal conductance, and photosynthetic rate, were monitored in both years. Pre-dawn water potential was measured using continuous stem psychrometers and the pressure chamber technique. Biochemical analyses focused on non-structural carbohydrate concentrations (starch, sucrose, and mannitol) and olive leaves' carbon-stable isotope ratio (δ13C). Results revealed a higher leaf gas exchange rate during the "ON" year, leading to an average 29.3% increase in water consumption and a 40.78% rise in the photosynthetic rate. Higher water usage during the "ON" year resulted in significantly lower (43.22% on average) leaf water potential. Sucrose and starch concentrations were also increased in the "ON" year, while there were no significant differences in mannitol concentration. Regarding the carbon-stable isotope ratio, leaves from the "OFF" year exhibited significantly higher δ13C values, suggesting a higher resistance to the CO2 pathway from the atmosphere to carboxylation sites compared to the "ON" year plants.

3.
Metabolites ; 13(9)2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37755247

ABSTRACT

The development and implementation of safe natural alternatives to synthetic pesticides are urgent needs that will provide ecological solutions for the control of plant diseases, bacteria, viruses, nematodes, pests, and weeds to ensure the economic stability of farmers and food security, as well as protection of the environment and human health. Unambiguously, production of botanical pesticides will allow for the sustainable and efficient use of natural resources and finally decrease the use of chemical inputs and burden. This is further underlined by the strict regulations on pesticide residues in agricultural products and is in harmony with the Farm to Fork strategy, which aims to reduce pesticide use by 50% by 2030. Thus, the present work aims to compile the scientific knowledge of the last 5 years (2017-February 2023) regarding the Mediterranean plants that present biopesticidal effects. The literature review revealed 40 families of Mediterranean plants with at least one species that have been investigated as potential biopesticides. However, only six families had the highest number of species, and they were reviewed comprehensively in this study. Following a systematic approach, the extraction methods, chemical composition, biopesticidal activity, and commonly used assays for evaluating the antimicrobial, pesticidal, repellant, and herbicidal activity of plant extracts, as well as the toxicological and safety aspects of biopesticide formulation, are discussed in detail. Finally, the aspects that have not yet been investigated or are under-investigated and future perspectives are highlighted.

4.
Foods ; 12(8)2023 Apr 17.
Article in English | MEDLINE | ID: mdl-37107467

ABSTRACT

There is a plethora of food products with geographical indications registered in the European Union without any study about their discrimination from other similar products. This is also the case for Greek currants. This paper aims to analyze if stable isotope analysis of C, N, and S could discriminate the Greek currants "Vositzza", registered as a product of Protected Designation of Origin, from two other currants registered as products of Protected Geographical Indication coming from neighboring areas. The first results show that the stable isotope ratio of sulfur is not detectable due to the very low sulfur content in the samples, and the analysis should be based on the stable isotope ratios of carbon and nitrogen to discriminate these products. The mean value of δ15N (1.38‱) of PDO "Vostizza" currants is lower than that of currants grown outside the PDO zone (2.01‱), while the mean value of δ13C of PDO "Vostizza" currants is higher (-23.93‱) in comparison to that of currants grown outside the PDO zone (-24.83‱). Nevertheless, the results indicate that with only two isotopic ratios, discrimination could not be achieved, and further analysis is required.

5.
Water Air Soil Pollut ; 234(2): 94, 2023.
Article in English | MEDLINE | ID: mdl-36744192

ABSTRACT

Climate change mitigation is a major concern of the European Union (EU). In 2019, the EU presented the European Green Deal (EGD), a new environmental strategy that aimed to neutralize climate change by 2050. Within its policy areas, the EGD included the Farm to Fork (F2F) Strategy that aims to reduce pesticide use by 50%, by 2030. This reduction was proposed due to the supposed negative effects of pesticides on the environment and its biota. Among the different pesticide groups (herbicides, fungicides, insecticides, etc.) though, herbicides are perhaps the hardest to reduce. This review aimed to shed light to any factors that might hinder the reduction of herbicide use; thus, the implementation of the Farm to Fork Strategy underlines some of its weaknesses and highlights key points of a viable herbicide reduction-related policy framework. The literature suggests that integrated weed management (IWM) consists perhaps the most suitable approach for the reduction of herbicides in the EU. Even though it is too soon to conclusively assess F2F, its success is not impossible.

6.
Foods ; 11(22)2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36429296

ABSTRACT

Fraudulent practices are the first and foremost concern of food industry, with significant consequences in economy and human's health. The increasing demand for food has led to food fraud by replacing, mixing, blending, and mislabeling products attempting to increase the profits of producers and companies. Consequently, there was the rise of a multidisciplinary field which encompasses a large number of analytical techniques aiming to trace and authenticate the origins of agricultural products, food and beverages. Among the analytical strategies have been developed for the authentication of geographical origin of foodstuff, Inductively Coupled Plasma Mass Spectrometry (ICP-MS) increasingly dominates the field as a robust, accurate, and highly sensitive technique for determining the inorganic elements in food substances. Inorganic elements are well known for evaluating the nutritional composition of food products while it has been shown that they are considered as possible tracers for authenticating the geographical origin. This is based on the fact that the inorganic component of identical food type originating from different territories varies due to the diversity of matrix composition. The present systematic literature review focusing on gathering the research has been done up-to-date on authenticating the geographical origin of agricultural products and foods by utilizing the ICP-MS technique. The first part of the article is a tutorial about food safety/control and the fundaments of ICP-MS technique, while in the second part the total research review is discussed.

7.
Foods ; 11(19)2022 Sep 22.
Article in English | MEDLINE | ID: mdl-36230036

ABSTRACT

Consumers are increasingly interested in the geographical origin of the foodstuff they consume as an important characteristic of food authenticity and quality. To assure the authenticity of the geographical origin, various methods have been proposed. Stable isotope analysis is a method that has been extensively used for products such as wine, oil, meat, while only a few studies have been conducted for the discrimination of seafood origin and especially for mullet roes or bottarga products. Analysis of the stable isotopes of C, N and S of Bottarga samples from four different origins were carried out. The values of δ15N (5.45‱) and δ34S (4.66‱) for the Greek Bottarga Product named 'Avgotaracho Messolongiou', from Messolongi lagoon were lower than other areas while δ13C values were higher (-14.84‱). The first results show that the stable isotopes ratios of carbon, nitrogen and sulphur could be used to discriminate the Greek Protected Designations of Origin Bottarga product 'Avgotaracho Messolongiou' from other similar products.

8.
Saudi J Biol Sci ; 27(12): 3676-3690, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33304180

ABSTRACT

Land-use intensification, contrary to sustainable land management, has an impact on the healthiness of the environmental agroecosystem. To assess the environmental implications in abandoned land, olive groves and maize crops, the most sensitive and reliable edaphic indicators were measured to estimate plant species diversity and potentially toxic elements in soil, among different types of land-use. Species diversity presents a decrease in maize crops and olive groves compared to abandoned land. The families with the greatest species diversity were Poaceae, Asteraceae and Fabaceae in each land-use. From the results of the canonical correspondence analysis among species, sampling sites and selected environmental variables, a clear separation between species and sampling sites belonging to different types of land-use was found, presenting strong correlation with specific edaphic parameters (pH, Soil Organic Matter, Silt, Electrical Conductivity, Total Nitrogen, N O 3 - , P, K, Zn and Cu). Species diversity was reduced in maize crops due to anthropogenic interventions such as the excessive use of nitrogen and phosphate fertilizers and herbicides. Despite the fact that the lowest richness of plant species was found in olive groves, non-removal of crop residue preserves soil organic matter. In 7.4% of soil samples in olive groves, Cu total concentrations were over 100 mg kg-1 denoting polluted soils, while the potentially toxic concentrations of bioavailable copper fraction ( Cu DTPA ) probably lead to a decrease of species diversity. Future researches should therefore focus on the accumulation of toxic elements in agricultural land to preserve species diversity and a healthy environment.

9.
Food Sci Technol Int ; 19(1): 11-23, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23239760

ABSTRACT

Quality changes due to oven-baking of sardine for 20, 40, 50 and 60 min and due to deep frying of anchovy for 2, 3, 4 and 5 min in olive and sunflower oil were studied. Linear increase in total losses with the time of processing was observed. A linear inverse relationship was observed between moisture/lipid and moisture/protein due to time of baking of sardines and time of frying of anchovies (wet matter). However, no changes were detected in sardine samples due to time of baking (dry matter), while a reduction in proteins and ash followed by an increase in lipids was detected in fried anchovies due to time of frying (dry matter). The fatty acid profiles indicated that a rich in EPA + DHA (33.16%) and in ω-3/ω-6 ratio (9.40) baked sardines can be produced in 20 min at 200 °C. The fatty acid profiles of fried anchovies tremendously changed, indicating entirely different products. Olive oil is probably a better medium to fry fish products, since either the two beneficial fatty acids (EPA and DHA) detected at higher concentrations in anchovies fried in olive oil or the ω-3/ω-6 ratio remained at higher values (0.71-2.56). An increase of cholesterol and squalene content with increasing the time of baking was detected in sardine samples, probably due to decline of moisture content. On the contrary, cholesterol significantly reduced due to frying of anchovy in olive oil. Simultaneously squalene concentration significantly and linearly increased, from 3.87 mg/100 g in the unprocessed anchovies to 73.25 mg/100 g in the samples fried for 5 min, indicating its existence at beneficial levels, besides low cholesterol concentration detected in fried olive oil and squalene concentration gradually and linearly decreased, confirming the absorption from the anchovy samples. Similar was the changes of cholesterol and squalene in anchovies samples fried in sunflower oil.


Subject(s)
Cooking/methods , Meat/standards , Plant Oils , Animals , Cholesterol/chemistry , Fatty Acids , Fishes , Food Analysis , Olive Oil , Squalene/chemistry , Sunflower Oil
10.
Food Sci Technol Int ; 19(1): 59-68, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23239761

ABSTRACT

Mussel samples were brined in 0%, 10% and 20% sodium chloride solutions and steamed with 2%, 5% and 8% liquid smoke at 1 (atmospheric pressure), 1.5 and 2 bar pressures. Sodium chloride and moisture content and instrumental color were analyzed. They were also objectively and hedonically assessed by 35 and 70 panellists, respectively, for their smoked flavor, saltiness, juiciness and color. The sodium chloride content was influenced by the brine concentration and brightness by the smoke and brine concentrations. The smoked flavor significantly and linearly (p = 0.018) influenced by the liquid smoke and brine concentration. A linear effect (p < 0.001) of brine concentration (p < 0.001) on sensory saltiness was expectedly observed. Brine concentration affected not only the saltiness but also the juiciness of the mussel smoked products. All factors of the study produced a significant linear effect (p = 0.008) on the intensity of color. Brine concentration was the only process variable affecting all the hedonic sensory variables in a curvilinear mode. The optimal hedonic conditions of the mussel products were achieved at smoke concentrations 3.8-8%, brine level from 8.5% to 13.5% at pressure 1 bar and from 11.5% to 16.5% at pressure 1.5 bar. All hedonic variables reached their maximum likeliness between 9 and 13. The optimal objective saltiness and juiciness varied between moderate and adequate salty and juicy product. The physicochemical variables employed in the study were adequately perceived by the panellists' sensory objective assessment as redundancy analysis revealed. Sodium chloride and moisture were the most important chemical variables (R (2 )= 42% and 13%, respectively).


Subject(s)
Cooking/methods , Flavoring Agents/chemistry , Meat/standards , Steam , Animals , Bivalvia , Pressure , Salts , Sodium Chloride
11.
Food Chem ; 134(3): 1665-72, 2012 Oct 01.
Article in English | MEDLINE | ID: mdl-25005997

ABSTRACT

A simple dispersive liquid-liquid microextraction (DLLME) protocol for the determination of 15 organochlorine pesticides residues in honey is proposed. The selected pesticides were separated using gas chromatography and detected by electron capture (ECD) or ion trap mass spectrometry (GC-IT/MS). Several parameters affecting the extraction efficiency namely type and volume of organic extraction solvent, type and volume of disperser solvent, sample pH, ionic strength, extraction time and centrifugation speed were systematically investigated. The final DLLME protocol involved the addition of 750 µL acetonitrile (disperser) and 50 µL chloroform (extraction solvent) into a 5 mL aqueous honey solution followed by centrifugation. The sedimented organic phase (chloroform) were analysed directly by GC-IT/MS or evaporated and reconstituted in acetonitrile prior to the GC-ECD analysis. The analytical performance of the GC-ECD and GC-IT/MS methods was compared and discussed. Under the selected experimental conditions, the enrichment factors varied between of 36 and 114. The limits of detection (LOD) were in the range of 0.02-0.15 µg L(-1) (0.4-3 ng g(-1)) for GC-ECD and 0.01-0.2 µg L(-1) (0.2-4 ng g(-1)) for GC-IT/MS which is adequate to verify compliance of products to legal tolerances. The proposed method was applied to the analysis of the selected organochlorine pesticides residues in various honey samples obtained from Greek region. Mean recoveries were ranged from 75% to 119% while the precision was better than 20% in both methodologies.


Subject(s)
Honey/analysis , Hydrocarbons, Chlorinated/analysis , Liquid Phase Microextraction , Pesticide Residues/analysis , Electrons , Gas Chromatography-Mass Spectrometry , Hydrogen-Ion Concentration , Limit of Detection , Reproducibility of Results , Solvents/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL