Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Opt Express ; 30(8): 12952-12963, 2022 Apr 11.
Article in English | MEDLINE | ID: mdl-35472920

ABSTRACT

Laguerre-Gaussian (LG) modes can be converted from fundamental Gaussian mode by using phase optical elements such as spiral phase plates (SPP), but the conversion efficiency is strongly reduced in high charge plates because of the transverse intensity deviation. In this paper, a three-step scheme is proposed to dramatically improve the conversion efficiency. First, a fundamental Gaussian beam is converted to a 1st-order LG beam via a 1st-order SPP and a spatial filtering system. Then, by using a periscopic axicon mirror (PAM), the lst-order LG beam is transformed into an annular beam with larger beam radius. Finally, by using a second high-order SPP, this intensity-matched ring beam can be effectively converted to a high-charge LG0l beam. Through optimization of the PAM's parameter, the total conversion efficiency from fundamental Gaussian beam to LG0l mode as high as 91.85% is obtained, which is much higher than the case without PAM. Numerical simulations are carried out by the particle-in-cell (PIC) code EPOCH to verify the effectiveness of the scheme.

3.
Opt Express ; 29(19): 30223-30236, 2021 Sep 13.
Article in English | MEDLINE | ID: mdl-34614749

ABSTRACT

High-quality ultrashort electron beams have diverse applications in a variety of areas, such as 4D electron diffraction and microscopy, relativistic electron mirrors and ultrashort radiation sources. Direct laser acceleration (DLA) mechanism can produce electron beams with a large amount of charge (several to hundreds of nC), but the generated electron beams usually have large divergence and wide energy spread. Here, we propose a novel DLA scheme to generate high-quality ultrashort electron beams by irradiating a radially polarized laser pulse on a nanofiber. Since electrons are continuously squeezed transversely by the inward radial electric field force, the divergence angle gradually decreases as electrons transport stably with the laser pulse. The well-collimated electron bunches are effectively accelerated by the circularly-symmetric longitudinal electric field and the relative energy spread also gradually decreases. It is demonstrated by three-dimensional (3D) simulations that collimated monoenergetic electron bunches with 0.75° center divergence angle and 14% energy spread can be generated. An analytical model of electron acceleration is presented which interprets well by the 3D simulation results.

5.
Sci Rep ; 7: 42666, 2017 02 20.
Article in English | MEDLINE | ID: mdl-28218247

ABSTRACT

Efficient energy boost of the laser-accelerated ions is critical for their applications in biomedical and hadron research. Achiev-able energies continue to rise, with currently highest energies, allowing access to medical therapy energy windows. Here, a new regime of simultaneous acceleration of ~100 MeV protons and multi-100 MeV carbon-ions from plasma micro-channel targets is proposed by using a ~1020 W/cm2 modest intensity laser pulse. It is found that two trains of overdense electron bunches are dragged out from the micro-channel and effectively accelerated by the longitudinal electric-field excited in the plasma channel. With the optimized channel size, these "superponderomotive" energetic electrons can be focused on the front surface of the attached plastic substrate. The much intense sheath electric-field is formed on the rear side, leading to up to ~10-fold ionic energy increase compared to the simple planar geometry. The analytical prediction of the optimal channel size and ion maximum energies is derived, which shows good agreement with the particle-in-cell simulations.

6.
Phys Rev E ; 95(1-1): 013201, 2017 Jan.
Article in English | MEDLINE | ID: mdl-28208417

ABSTRACT

Generation of intense coherent THz radiation by obliquely incidenting an intense laser pulse on a wire target is studied using particle-in-cell simulation. The laser-accelerated fast electrons are confined and guided along the surface of the wire, which then acts like a current-carrying line antenna and under appropriate conditions can emit electromagnetic radiation in the THz regime. For a driving laser intensity ∼3×10^{18}W/cm^{2} and pulse duration ∼10 fs, a transient current above 10 KA is produced on the wire surface. The emission-cone angle of the resulting ∼0.15 mJ (∼58 GV/m peak electric field) THz radiation is ∼30^{∘}. The conversion efficiency of laser-to-THz energy is ∼0.75%. A simple analytical model that well reproduces the simulated result is presented.

7.
Phys Rev E ; 94(3-1): 033206, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27739720

ABSTRACT

Radially polarized intense terahertz (THz) radiation behind a thin foil irradiated by ultrahigh-contrast ultrashort relativistic laser pulse is recorded by a single-shot THz time-domain spectroscopy system. As the thickness of the target is reduced from 30 to 2 µm, the duration of the THz emission increases from 5 to over 20 ps and the radiation energy increases dramatically, reaching ∼10.5mJ per pulse, corresponding to a laser-to-THz radiation energy conversion efficiency of 1.7%. The efficient THz emission can be attributed to reflection (deceleration and acceleration) of the laser-driven hot electrons by the target-rear sheath electric field. The experimental results are consistent with that of a simple model as well as particle-in-cell simulation.

8.
Phys Rev E ; 93(5): 053206, 2016 May.
Article in English | MEDLINE | ID: mdl-27300994

ABSTRACT

Harmonic generation from linearly polarized high-intensity short-pulse laser normally impacting a solid plasma grating is investigated using analytical modeling and particle-in-cell simulation. It is found that when the radiation excited by the relativistic electron quiver motion in the laser fields suitably matches a harmonic of the grating periodicity, it will be significantly enhanced and peak with narrow angular spread in specific directions. The corresponding theory shows that the phenomenon can be attributed to an interference effect of the periodic grating on the excitation.

9.
Article in English | MEDLINE | ID: mdl-26764842

ABSTRACT

The development of transverse instability in the radiation-pressure-acceleration dominant laser-foil interaction is numerically examined by two-dimensional particle-in-cell simulations. When a plane laser impinges on a foil with modulated surface, the transverse instability is incited, and periodic perturbations of the proton density develop. The growth rate of the transverse instability is numerically diagnosed. It is found that the linear growth of the transverse instability lasts only a few laser periods, then the instability gets saturated. In order to optimize the modulation wavelength of the target, a method of information entropy is put forward to describe the chaos degree of the transverse instability. With appropriate modulation, the transverse instability shows a low chaos degree, and a quasi-monoenergetic proton beam is produced.

10.
Article in English | MEDLINE | ID: mdl-24730955

ABSTRACT

An analytical model for energy absorption during the interaction of an ultrashort, ultraintense laser with an overdense plasma is proposed. Both the compression effect of the electron density profile and the oscillation of the electron plasma surface are self-consistently included, which exhibit significant influences on the laser energy absorption. Based on our model, the general scaling law of the compression effect depending on laser strength and initial density is derived, and the temporal variation of the laser absorption due to the boundary oscillating effect is presented. It is found that due to the oscillation of the electron plasma surface, the laser absorption rate will vibrate periodically at ω or 2ω frequency for the p-polarized and s-polarized laser, respectively. The effect of plasma collision on the laser absorption has also been investigated, which shows a considerable rise in absorption with increasing electron-ion collision frequency for both polarizations.

11.
Opt Express ; 21(19): 22558-65, 2013 Sep 23.
Article in English | MEDLINE | ID: mdl-24104145

ABSTRACT

Simultaneous generation of monoenergetic tunable protons and carbon ions from intense laser multi-component nanofoil interaction is demonstrated by using particle-in-cell simulations. It is shown that, the protons with the largest charge-to-mass ratio are instantly separated from other ion species and are efficiently accelerated in the "phase stable" way. The carbon ions always ride on the heavier oxygen ion front with an electron-filling gap between the protons and carbon ions. At the cost of widely spread oxygen ions, monoenergetic collimated protons and carbon ions are obtained simultaneously. By modulating the heavier ion densities in the foil, it is capable to control the final beam quality, which is well interpreted by a simple analytical model.

SELECTION OF CITATIONS
SEARCH DETAIL
...