Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Behav Brain Res ; 465: 114960, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38494129

ABSTRACT

Cognitive behavioral therapy, rooted in exposure therapy, is currently the primary approach employed in the treatment of anxiety-related conditions, including post-traumatic stress disorder (PTSD). In laboratory settings, fear extinction in animals is a commonly employed technique to investigate exposure therapy; however, the precise mechanisms underlying fear extinction remain elusive. Casein kinase 2 (CK2), which regulates neuroplasticity via phosphorylation of its substrates, has a significant influence in various neurological disorders, such as Alzheimer's disease and Parkinson's disease, as well as in the process of learning and memory. In this study, we adopted a classical Pavlovian fear conditioning model to investigate the involvement of CK2 in remote fear memory extinction and its underlying mechanisms. The results indicated that the activity of CK2 in the medial prefrontal cortex (mPFC) of mice was significantly upregulated after extinction training of remote cued fear memory. Notably, administration of the CK2 inhibitor CX-4945 prior to extinction training facilitated the extinction of remote fear memory. In addition, CX-4945 significantly upregulated the expression of p-ERK1/2 and p-CREB in the mPFC. Our results suggest that CK2 negatively regulates remote fear memory extinction, at least in part, by inhibiting the ERK-CREB pathway. These findings contribute to our understanding of the underlying mechanisms of remote cued fear extinction, thereby offering a theoretical foundation and identifying potential targets for the intervention and treatment of PTSD.


Subject(s)
Fear , Stress Disorders, Post-Traumatic , Animals , Mice , Casein Kinase II/metabolism , Conditioning, Classical/physiology , Extinction, Psychological/physiology , Fear/physiology , Prefrontal Cortex/metabolism , Stress Disorders, Post-Traumatic/metabolism
2.
Neurotox Res ; 41(4): 324-337, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37014368

ABSTRACT

Methamphetamine (Meth), a commonly used central nervous system stimulant, is highly addictive. Currently, there is no effective treatment for Meth dependence and abuse, although cell adhesion molecules (CAMs) have been shown to play an important role in the formation and remodeling of synapses in the nervous system while also being involved in addictive behavior. Contactin 1 (CNTN1) is a CAM that is widely expressed in the brain; nevertheless, its role in Meth addiction remains unclear. Therefore, in the present study, we established mouse models of single and repeated Meth exposure and subsequently determined that CNTN1 expression in the nucleus accumbens (NAc) was upregulated in mice following single or repeated Meth exposure, whereas CNTN1 expression in the hippocampus was not significantly altered. Intraperitoneal injection of the dopamine receptor 2 antagonist haloperidol reversed Meth-induced hyperlocomotion and upregulation of CNTN1 expression in the NAc. Additionally, repeated Meth exposure also induced conditioned place preference (CPP) in mice and upregulated the expression levels of CNTN1, NR2A, NR2B, and PSD95 in the NAc. Using an AAV-shRNA-based approach to specifically silence CNTN1 expression in the NAc via brain stereotaxis reversed Meth-induced CPP and decreased the expression levels of NR2A, NR2B, and PSD95 in the NAc. These findings suggest that CNTN1 expression in the NAc plays an important role in Meth-induced addiction, and the underlying mechanism may be related to the expression of synapse-associated proteins in the NAc. The results of this study improved our understanding of the role of cell adhesion molecules in Meth addiction.


Subject(s)
Amphetamine-Related Disorders , Central Nervous System Stimulants , Methamphetamine , Mice , Animals , Methamphetamine/pharmacology , Nucleus Accumbens , Contactin 1/metabolism , Central Nervous System Stimulants/pharmacology , Brain/metabolism , Amphetamine-Related Disorders/metabolism
3.
Cereb Cortex ; 33(5): 1814-1825, 2023 02 20.
Article in English | MEDLINE | ID: mdl-35511705

ABSTRACT

Exposure therapy is the most effective approach of behavioral therapy for anxiety and post-traumatic stress disorder (PTSD). But fear is easy to reappear even after successful extinction. So, identifying novel strategies for augmenting exposure therapy is rather important. It was reported that exercise had beneficial effects on cognitive and memory deficits. However, whether exercise could affect fear memory, especially for fear extinction remained elusive. Here, our results showed that exposure to acute mild exercise 1 or 2 h before extinction training can augment recent fear extinction retention and 2 h for the remote fear extinction retention. These beneficial effects could be attributed to increased YTHDF1 expression in medial prefrontal cortex (mPFC). Furthermore, by using an AAV-shRNA-based approach to silence YTHDF1 expression via stereotactic injection in prelimbic cortex (PL) or infralimbic cortex (IL), respectively, we demonstrated that silence YTHDF1 in IL, but not in PL, blunted augmentation of exposure therapy induced by acute mild exercise and accompanied with decreased NR2B and GluR1 expression. Moreover, YTHDF1 modulated dendritic spines remodeling of pyramidal neuron in IL. Collectively, our findings suggested that acute mild exercise acted as an effective strategy in augmenting exposure therapy with possible implications for understanding new treatment underlying PTSD.


Subject(s)
Extinction, Psychological , Fear , Rats , Animals , Extinction, Psychological/physiology , Fear/physiology , Rats, Sprague-Dawley , Prefrontal Cortex/metabolism , Anxiety
4.
Brain Res Bull ; 179: 13-24, 2022 02.
Article in English | MEDLINE | ID: mdl-34848271

ABSTRACT

Overweight induced by high-fat diet (HFD) represents one of the major health concerns in modern societies, which can cause lasting peripheral and central metabolic disorders in all age groups. Specifically, childhood obesity could lead to life-long impact on brain development and functioning. On the other hand, environmental enrichment (EE) has been demonstrated to be beneficial for learning and memory. Here, we explored the impact of high-fat diet on olfaction and organization of olfactory bulb cells in adolescent mice, and the effect of EE intervention thereon. Puberty mice (3-week-old) fed with HFD for 10 weeks exhibited poorer odor sensitivity and olfactory memory relative to controls consuming standard chows. The behavioral deficits were rescued in the HFD group with EE intervention. Neuroanatomically, parvalbumin (PV) interneurons in the olfactory bulb (OB) were reduced in the HFD-fed animals relative to control, while EE intervention also normalized this alteration. In contrast, cells expressing calbindin (CB), doublecortin (DCX) in the OB were not altered. Our findings suggest that PV interneurons may play a crucial role in mediating the HFD-induced olfactory deficit in adolescent mice, and can also serve a protective effect of EE against the functional deficit.


Subject(s)
Diet, High-Fat/adverse effects , Environment , Interneurons/metabolism , Olfaction Disorders/etiology , Olfaction Disorders/therapy , Olfactory Bulb , Parvalbumins/metabolism , Age Factors , Animals , Behavior, Animal/physiology , Disease Models, Animal , Mice , Olfactory Bulb/cytology , Olfactory Bulb/metabolism , Olfactory Bulb/physiopathology
5.
CNS Neurol Disord Drug Targets ; 20(3): 273-284, 2021 10 26.
Article in English | MEDLINE | ID: mdl-32787766

ABSTRACT

BACKGROUND: The long interspersed element-1 (L1) participates in memory formation, and DNA methylation patterns of L1 may suggest resilience or vulnerability factors for Post-Traumatic Stress Disorder (PTSD), of which the principal manifestation is a pathological exacerbation of fear memory. However, the unique roles of L1 in the reconsolidation of fear memory remain poorly understood. OBJECTIVE: The study aimed to investigate the role of L1 in the reconsolidation of context-dependent fear memory. METHODS: Mice underwent fear conditioning and fear recall in the observation chambers. Fear memory was assessed by calculating the percentage of time spent freezing in 5 min. The medial prefrontal cortex (mPFC) and hippocampus were removed for further analysis. Open Reading Frame 1 (ORF1) mRNA and ORF2 mRNA of L1 were analyzed by real-time quantitative polymerase chain reaction. After reactivation of fear memory, lamivudine was administered and its effects on fear memory reconsolidation were observed. RESULTS: ORF1 and ORF2 mRNA expressions in the mPFC and hippocampus after recent (24 h) and remote (14 days) fear memory recall exhibited augmentation via different temporal and spatial patterns. Reconsolidation of fear memory was markedly inhibited in mice treated with lamivudine, which could block L1. DNA methyltransferase mRNA expression declined following lamivudine treatment in remote fear memory recall. CONCLUSION: The retrotransposition of L1 participated in the reconsolidation of fear memory after reactivation of fear memory, and with lamivudine treatment, spontaneous recovery decreased with time after recent and remote fear memory recall, providing clues for understanding the roles of L1 in fear memory.


Subject(s)
Fear/drug effects , Long Interspersed Nucleotide Elements/drug effects , Memory/drug effects , Animals , Hippocampus/drug effects , Lamivudine/therapeutic use , Male , Memory, Long-Term/drug effects , Mice , Open Reading Frames/drug effects , Prefrontal Cortex/drug effects , Reverse Transcriptase Inhibitors/therapeutic use , Stress Disorders, Post-Traumatic/drug therapy
6.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 45(8): 892-900, 2020 Aug 28.
Article in English, Chinese | MEDLINE | ID: mdl-33053529

ABSTRACT

OBJECTIVES: To investigate the effects of environmental enrichment on cognitive behavior and the expression of adenosine triphosphate binding cassette transporter A7 (ABCA7) in hippocampus of the adolescent mice with high fat diet. METHODS: A total of healthy 3-week-old male C57BL/6J mice were randomly divided into 3 groups: a control (Con) group, a high fat diet (HFD) group, and a high fat diet+environmental enrichment (HFD+EE) group, with 10 mice in each group. The Con group was given normal diet. The HFD group was given high fat diet. The HFD+EE group was given high fat diet; at the same time, they treated by environmental enrichment. After 10 weeks, open field test was used to detect activity. Novel object recognition test and Y maze test were used to detect cognitive behavior. After the test, the brain was collected and used to detect the protein expression of ABCA7 in the hippocampus by immunohistochemistry and Western blotting. And quantitative RT-PCR (RT-qPCR) was used to detect the ABCA7 mRNA expression level in the hippocampus. RESULTS: There was no significant difference in the total movement distance in the mice among the 3 groups (P>0.05). In the novel object recognition test, the discrimination index of the HFD group was much lower than that of the Con group, and the difference was significant (P<0.01). The discrimination index of the HFD+EE group was higher than that of the HFD group, and the difference was significant (P<0.01). In the Y maze test, there was no significant difference in the percentage of time spent on the new arm among the mice in the 3 groups (P=0.1279). The percentage of entries in new arm in the HFD group was much lower than that in the Con group, and the difference was significant (P<0.01). The percentage of the entries in new arm in the HFD+EE group was significantly higher than that in the HFD group (P<0.05). The results of immunohistochemistry showed that ABCA7 was positively expressed in the cytoplasm of hippocampal neurons in the mice from these 3 groups, and the expression of ABCA7 in the hippocampus of the HFD group was lower than that of the Con group (CA1: P<0.01, CA3: P=0.06), while the expression of ABCA7 in hippocampus of HFD+EE group was higher than that of HFD group (CA1: P=0.23, CA3: P<0.05). Western blotting results showed that compared with the Con group, the protein level of ABCA7 in the hippocampus of the HFD group was significantly reduced (P<0.05), while compared with the Con group, the protein level of ABCA7 in the hippocampus of the HFD+EE group showed an upward trend (P=0.06). The results of RT-qPCR showed that the mRNA level of ABCA7 in the hippocampus of HFD group was significantly lower than that of the Con group (P<0.01), while the mRNA level of ABCA7 in the hippocampus of HFD+EE group was significantly higher than that of the HFD group (P<0.01). CONCLUSIONS: High fat diet in adolescent can impair cognitive function with a decrease in the expression of ABCA7 in hippocampus, which can be ameliorate by environmental enrichment.


Subject(s)
ATP-Binding Cassette Transporters , Adenosine Triphosphate , Diet, High-Fat , Hippocampus , Animals , Cognition , Diet, High-Fat/adverse effects , Hippocampus/metabolism , Male , Mice , Mice, Inbred C57BL
7.
Neurotox Res ; 38(2): 370-384, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32378057

ABSTRACT

Major depression disorder is one of the most common psychiatric disorders that greatly threaten the mental health of a large population worldwide. Previous studies have shown that endoplasmic reticulum (ER) stress plays an important role in the pathophysiology of depression, and current research suggests that brain-derived neurotrophic factor precursor (proBDNF) is involved in the development of depression. However, the relationship between ER and proBDNF in the pathophysiology of depression is not well elucidated. Here, we treated primary hippocampal neurons of mice with corticosterone (CORT) and evaluated the relationship between proBDNF and ERS. Our results showed that CORT induced ERS and upregulated the expression of proBDNF and its receptor, Follistatin-like protein 4 (FSTL4), which contributed to significantly decreased neuronal viability and expression of synaptic-related proteins including NR2A, PSD95, and SYN. Anti-proBDNF neutralization and ISRIB (an inhibitor of the ERS) treatment, respective ly, protected neuronal viabilities and increased the expression of synaptic-related proteins in corticosterone-exposed neurons. ISRIB treatment reduced the expression of proBDNF and FSTL4, whereas anti-proBDNF treatment did not affect ERS markers (Grp78, p-PERK, ATF4) expression. Our study presented evidence that CORT-induced ERS negatively regulated the neuronal viability and the level of synaptic-related protein of primary neurons via the proBDNF/FSTL4 pathway.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Brain-Derived Neurotrophic Factor/drug effects , Corticosterone/pharmacology , Endoplasmic Reticulum Stress/drug effects , Hippocampus/cytology , Neurons/drug effects , Protein Precursors/drug effects , Animals , Brain-Derived Neurotrophic Factor/metabolism , Depressive Disorder, Major , Disks Large Homolog 4 Protein/drug effects , Disks Large Homolog 4 Protein/metabolism , Endoplasmic Reticulum Chaperone BiP , Follistatin-Related Proteins/drug effects , Follistatin-Related Proteins/metabolism , Mice , Neurons/metabolism , Primary Cell Culture , Protein Precursors/metabolism , Receptors, N-Methyl-D-Aspartate/drug effects , Receptors, N-Methyl-D-Aspartate/metabolism , Synaptophysin/metabolism
8.
Sci Rep ; 10(1): 3319, 2020 02 24.
Article in English | MEDLINE | ID: mdl-32094477

ABSTRACT

Exposure to a novel environment can enhance the extinction of recent contextual fear in mice. This has been explained by a tagging and capture hypothesis. Consistently, we show in mice that exposure to a novel environment before extinction training promoted the extinction of recent auditory fear. However, such a promoting effect of novelty was absent for remote memories. In the present study, we replaced the regular extinction training with a retrieval-extinction session which capitalized on a reconsolidation window. When novelty exposure was followed by a retrieval-extinction session, remote fear was distinguished more easily and permanently. We have termed it as a "novelty-retrieval-extinction" paradigm. This paradigm played a greater role in the extinction of remote fear when fear conditioning and retrieval-extinction occurred in two different contexts other than in one identical context. The mechanism underlying the facilitating effect of this paradigm might involve up-regulation of histone acetylation in the hippocampus, which has been reported to increase functional and structural neuroplasticity. The present work proposes an effective, drug-free paradigm for the extinction of remote fear, which could be easily adapted in humans with least side effects.


Subject(s)
Extinction, Psychological/physiology , Fear/physiology , Memory, Long-Term/physiology , Mental Recall/physiology , Acetylation , Acoustic Stimulation , Animals , Conditioning, Classical , Hippocampus/metabolism , Histones/metabolism , Lysine/metabolism , Male , Mice , Mice, Inbred C57BL
9.
Brain Res Bull ; 149: 184-193, 2019 07.
Article in English | MEDLINE | ID: mdl-31034944

ABSTRACT

Stress can influence decision-making in humans from many cognitive perspectives, while the underlying neurobiological mechanism remains incompletely understood. Food-foraging is a rodent behavior involving strategic possessing of nutritional supply in social context; experimental model of this behavior could help explore the effect of stress on decision-making and the brain mechanism thereof. In the present study, the influence of stress on food-foraging behavior was assessed in rats using an open field choosing paradigm wherein food collection (standard food or sweet food) were associated with social competition (with or without a rat in the cage). Acute restraint stress (ARS) was induced by placing the rat in a plastic restrainer for 2 h before food-foraging behavioral tests, with the effect of stress also determined biochemically and immunohistochemically. Restraint stressed rats showed anxiety-like behavior and elevation of serum corticosterone (CORT) and epinephrine (EPI) relative to controls. Both restraint and control animals preferred sugared food. However, the former group tended to forage food from a cage not occupied by a conspecific rat, whereas the control rats preferred to obtain food from the cage with a social competitor. Thus, the total amount of food foraged and eaten are reduced in the restrained rats than in controls. While the restraint animals had normal social interaction with other rats, they displayed enhanced social agonistic behavior. In brain examination, ARS attenuated the increase in immunolabeling and protein levels of c-fos, p-CREB, p-ERK1/2 in the anterior cingulate cortex (ACC) observed in control animals in association with food-foraging. These results indicate that restraint stressed rats tend to forage food by taking the advantage of a less competitive opportunity. Mechanistically, this decision-making alternative appears to be mediated through a neuronal deactivation in the ACC. The current findings provide novel insights into neuronal processing of decision-making behavior under the influence of stress.


Subject(s)
Decision Making/physiology , Feeding Behavior/physiology , Stress, Psychological/metabolism , Animals , Anxiety/psychology , Behavior, Animal/physiology , Corticosterone/blood , Epinephrine/blood , Food , Gyrus Cinguli/metabolism , Male , Rats , Rats, Sprague-Dawley , Restraint, Physical/psychology
10.
Neurotox Res ; 35(1): 160-172, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30120712

ABSTRACT

Stress plays a crucial role in several psychiatric disorders, including anxiety. However, the underlying mechanisms remain poorly understood. Here, we used acute stress (AS) and chronic restraint stress (CRS) models to develop anxiety-like behavior and investigate the role of miR-150 in the hippocampi of mice. Corticosterone levels as well as glutamate receptors in the hippocampus were evaluated. We found that anxiety-like behavior was induced after either AS or CRS, as determined by the open-field test (OFT) and elevated plus-maze test (EPM). Increased corticosterone levels were observed in the blood of AS and CRS groups, while the expression of miR-150 mRNA in the hippocampus was significantly decreased. The expressions of GluN2A, GluR1, GluR2, and V-Glut2 in the hippocampus were decreased after either AS or CRS. Hippocampal GAD67 expression was increased by AS but not CRS, and GluN2B expression was decreased by CRS but not AS. Adult miR-150 knockout mice showed anxiety-like behavior, as assessed by the OFT and EPM. The expressions of GluN2A, GluN2B, GluR1, and GluR2 were also downregulated, but the expression of V-Glut2 was upregulated in the hippocampi of miR-150 knockout mice compared with wild-type mice. Interestingly, we found that the miR-150 knockout mice showed decreased dendrite lengths, dendrite branchings, and numbers of dendrite spines in the hippocampus compared with wild-type mice. These results suggest that miR-150 may influence the synaptic plasticity of the hippocampus and play a significant role in stress-induced anxiety-like behavior in adult mice.


Subject(s)
Anxiety/etiology , Anxiety/metabolism , MicroRNAs/metabolism , Stress, Psychological/complications , Stress, Psychological/metabolism , Amino Acid Transport System X-AG/metabolism , Animals , Anxiety/pathology , Corticosterone/metabolism , Dendrites/metabolism , Dendrites/pathology , Gene Expression Regulation , Hippocampus/metabolism , Hippocampus/pathology , Male , Mice, Inbred C57BL , Mice, Knockout , MicroRNAs/genetics , RNA, Messenger/metabolism , Random Allocation , Receptors, Glutamate/metabolism , Restraint, Physical , Stress, Psychological/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...