Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 146(14): 9967-9974, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38441882

ABSTRACT

Nanoscale defect engineering plays a crucial role in incorporating extraordinary catalytic properties in two-dimensional materials by varying the surface groups or site interactions. Herein, we synthesized high-loaded nitrogen-doped Boridene (N-Boridene (Mo4/3(BnN1-n)2-mTz), N-doped concentration up to 26.78 at %) nanosheets by chemical exfoliation followed by cyanamide intercalation. Three different nitrogen sites are observed in N-Boridene, wherein the site of boron vacancy substitution mainly accounts for its high chemical activity. Attractively, as a cathode for Mg-CO2 batteries, it delivers a long-term lifetime (305 cycles), high-energy efficiency (93.6%), and ultralow overpotential (∼0.09 V) at a high current of 200 mA g-1, which overwhelms all Mg-CO2 batteries reported so far. Experimental and computational studies suggest that N-Boridene can remarkably change the adsorption energy of the reaction products and lower the energy barrier of the rate-determining step (*MgCO2 → *MgCO3·xH2O), resulting in the rapid reversible formation/decomposition of new MgCO3·5H2O products. The surging Boridene materials with defects provide substantial opportunities to develop other heterogeneous catalysts for efficient capture and converting of CO2.

2.
Adv Mater ; 36(21): e2312117, 2024 May.
Article in English | MEDLINE | ID: mdl-38377528

ABSTRACT

Highly active single-atom electrocatalysts for the oxygen reduction reaction are crucial for improving the energy conversion efficiency, but they suffer from a limited choice of metal centers and unsatisfactory stabilities. Here, this work reports that optimization of the binding energies for reaction intermediates by tuning the d-orbital hybridization with axial groups converts inactive subgroup-IVB (Ti, Zr, Hf) moieties (MN4) into active motifs (MN4O), as confirmed with theoretical calculations. The competition between metal-ligand covalency and metal-intermediate covalency affects the d-p orbital hybridization between the metal site and the intermediates, converting the metal centers into active sites. Subsequently, dispersed single-atom M sites coordinated by nitrogen/oxygen groups have been prepared on graphene (s-M-N/O-C) catalysts on a large-scale with high-energy milling and pyrolysis. Impressively, the s-Hf-N/O-C catalyst with 5.08 wt% Hf exhibits a half-wave potential of 0.920 V and encouraging performance in a zinc-air battery with an extraordinary cycling life of over 1600 h and a large peak power-density of 256.9 mW cm-2. This work provides promising single-atom electrocatalysts and principles for preparing other catalysts for the oxygen reduction reaction.

3.
Small ; : e2311268, 2024 Feb 11.
Article in English | MEDLINE | ID: mdl-38342592

ABSTRACT

The development of economical and efficient oxygen reduction reaction (ORR) catalysts is crucial to accelerate the widespread application rhythm of aqueous rechargeable zinc-air batteries (ZABs). Here, a strategy is reported that the modification of the binding energy for reaction intermediates by the axial N-group converts the inactive spinel MgAl2 O4 into the active motif of MgAl2 O4 -N. It is found that the introduction of N species can effectively optimize the electronic configuration of MgAl2 O4 , thereby significantly reducing the adsorption strength of *OH and boosting the reaction process. This main-group MgAl2 O4 -N catalyst exhibits a high ORR activity in a broad pH range from acidic and alkaline environments. The aqueous ZABs assembled with MgAl2 O4 -N shows a peak power density of 158.5 mW cm-2 , the long-term cyclability over 2000 h and the high stability in the temperature range from -10 to 50 °C, outperforming the commercial Pt/C in terms of activity and stability. This work not only serves as a significant candidate for the robust ORR electrocatalysts of aqueous ZABs, but also paves a new route for the effective reutilization of waste Mg alloys.

4.
Adv Mater ; 36(11): e2304942, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37436944

ABSTRACT

Sodium (Na) batteries are being considered as prospective candidates for the next generation of secondary batteries in contrast to lithium-based batteries, due to their high raw-material abundance, low cost, and sustainability. However, the unfavorable growth of Na-metal deposition and severe interfacial reactions have prevented their large-scale applications. Here, a vacuum filtration strategy, through amyloid-fibril-modified glass-fiber separators, is proposed to address these issues. The modified symmetric cell can be cycled for 1800 h, surpassing the performance of previously reported Na-based electrodes under an ester-based electrolyte. Moreover, the Na/Na3 V2 (PO4 )3 full cell with a sodiophilic amyloid-fibril-modified separator exhibits a capacity retention of 87.13% even after 1000 cycles. Both the experimental and the theoretical results show that the sodiophilic amyloid fibril homogenizes the electric field and Na-ion concentration, fundamentally inhibiting dendrite formation. Simultaneously, the glutamine amino acids in the amyloid fibril have the highest adsorption energy for Na, resulting in the formation of a stable Na3 N- and NaNx Oy -rich solid-electrolyte-interface film on the anode during cycling. This work provides not only a possible pathway to solve the dendrite problem in metal batteries using environmentally friendly biomacromolecular materials, but also a new direction for expanding biomaterial applications.

5.
J Org Chem ; 88(19): 13825-13837, 2023 Oct 06.
Article in English | MEDLINE | ID: mdl-37737590

ABSTRACT

A metal-free selective ortho-C-H amidation of aryl iodines(III) with the use of N-methoxy amides as aminating reagents under mild conditions is described here. In the protocol, excellent chemoselectivity and high regioselectivity were obtained. Notably, the iodine substituent rendered the amidation product suitable to be used for further elaboration.

6.
Polymers (Basel) ; 15(6)2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36987341

ABSTRACT

Fracturing fluids are widely applied in the hydraulic fracturing of shale gas reservoirs, but the fracturing fluid flowback efficiency is typically less than 50%, severely limiting the shale gas recovery. Additionally, the mechanism and main influencing factors of fracturing fluid flowback are unclear. In this study, microscopic experiments are conducted to simulate the fracturing fluid flowback progress in shale gas reservoirs. The mechanism and factors affecting fracturing fluid flowback/retention in the fracture zone were analyzed and clarified. Results show that the ultimate flowback efficiency of fracturing fluid is positively correlated with the fracturing fluid concentration and the gas driving pressure difference. There are four kinds of mechanisms responsible for fracturing fluid retention in the pore network: viscous resistance, the Jamin effect, the gas blockage effect and the dead end of the pore. Additionally, the ultimate flowback efficiency of the fracturing fluid increases linearly with increasing capillary number. These insights will advance the fundamental understanding of fracturing fluid flowback in shale gas reservoirs and provide useful guidance for shale gas reservoirs development.

7.
Angew Chem Int Ed Engl ; 62(10): e202219025, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36646648

ABSTRACT

Intricate superstructures possess unusual structural features and promising applications. The preparation of superstructures with single-crystalline nature are conducive to understanding the structure-property relationship, however, remains an intriguing challenge. Herein we put forward a new hierarchical assembly strategy towards rational and precise construction of intricate single-crystal superstructures. Firstly, two unprecedented superclusters in Rubik's cube's form with a size of ≈2×2×2 nm3 are constructed by aggregation of eight {Pr4 Sb12 } oxohalide clusters as secondary building units (SBUs). Then, the Rubik's cubes further act as isolable tertiary building units (TBUs) to assemble diversified single-crystal superstructures. Importantly, intermediate assembly states are captured, which helps illustrate the evolution of TBU-based superstructures and thus provides a profound understanding of the assembly process of superstructures at the atomic level.

8.
J Org Chem ; 87(21): 14194-14207, 2022 11 04.
Article in English | MEDLINE | ID: mdl-36265020

ABSTRACT

An acyl lactonization of alkenes with aldehydes under visible-light photoredox catalysis is described. With the protocol, a broad scope of alkenoic acids and aldehydes could be compatible and good functional group tolerance is obtained. A series of acyl lactones are obtained with isolated yields ranging from 50-95%. Mechanistic studies revealed that the transformation should proceed via a radical chain process.


Subject(s)
Aldehydes , Alkenes , Lactones , Molecular Structure , Catalysis
9.
Adv Mater ; 33(39): e2103617, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34365688

ABSTRACT

Covalent organic frameworks (COFs) are potentially promising electrode materials for electrochemical charge storage applications thanks to their pre-designable reticular chemistry with atomic precision, allowing precise control of pore size, redox-active functional moieties, and stable covalent frameworks. However, studies on the mechanistic and practical aspects of their zinc-ion storage behavior are still limited. In this study, a strategy to enhance the electrochemical performance of COF cathodes in zinc-ion batteries (ZIBs) by introducing the quinone group into 1,4,5,8,9,12-hexaazatriphenylene-based COFs is reported. Electrochemical characterization demonstrates that the introduction of the quinone groups in the COF significantly pushes up the Zn2+ storage capability against H+ and elevates the average (dis-)charge potential in aqueous ZIBs. Computational and experimental analysis further reveals the favorable redox-active sites that host Zn2+ /H+ in COF electrodes and the root cause for the enhanced electrochemical performance. This work demonstrates that molecular engineering of the COF structure is an effective approach to achieve practical charge storage performance.

10.
J Org Chem ; 86(17): 11998-12007, 2021 09 03.
Article in English | MEDLINE | ID: mdl-34404211

ABSTRACT

A visible-light photoredox-catalyzed sulfonyl lactonization of unsaturated carboxylic acids with sulfonyl chlorides is described. This reaction features good functional group tolerance and a broad substrate scope, providing a simple and efficient protocol to access a wide range of sulfonyl lactones in high to excellent yields. Preliminary mechanistic investigations suggested that a free-radical pathway should be involved in the process.


Subject(s)
Chlorides , Lactones , Carboxylic Acids , Catalysis , Light
11.
J Org Chem ; 86(15): 10580-10590, 2021 Aug 06.
Article in English | MEDLINE | ID: mdl-34314188

ABSTRACT

A copper-catalyzed intermolecular electrophilic amination of benzamides with O-benzoyl hydroxylamines was achieved with the assistance of an 8-aminoquinolyl group. With this protocol, good compatibility was observed for a variety of aryl amides and heteroaryl amides, and excellent tolerance with various functional groups was achieved. Significantly, the monoaminated product was overwhelmingly delivered under the simple reaction conditions. Preliminary mechanistic investigations suggested that a radical pathway should be excluded and C-H activation be potentially the rate-determining step.

12.
ACS Nano ; 14(7): 9042-9049, 2020 07 28.
Article in English | MEDLINE | ID: mdl-32538614

ABSTRACT

With recent growing interest in biomimetic smart nanochannels, a biological sensory transduction in response to external stimuli has been of particular interest in the development of biomimetic nanofluidic systems. Here we demonstrate the MXene-based subnanometer ion channels that convert external temperature changes to electric signals via preferential diffusion of cations under a thermal gradient. In particular, coupled with a photothermal conversion feature of MXenes, an array of the nanoconfined Ti3C2Tx ion channels can capture trans-nanochannel diffusion potentials under a light-driven axial temperature gradient. The nonisothermal open-circuit potential across channels is enhanced with increasing cationic permselectivity of confined channels, associated with the ionic concentration or pH of permeant fluids. The photothermoelectric ionic response (evaluated from the ionic Seebeck coefficient) reached up to 1 mV·K-1, which is comparable to biological thermosensory channels, and demonstrated stability and reproducibility in the absence and presence of an ionic concentration gradient. With advantages of physicochemical tunability and easy fabrication process, the lamellar ion conductors may be an important nanofluidic thermosensation platform possibly for biomimetic sensory systems.

13.
Dalton Trans ; 49(6): 1803-1810, 2020 Feb 14.
Article in English | MEDLINE | ID: mdl-31989138

ABSTRACT

With the in situ-generated [Pb(MCP)4]2+ (HMCP+ = 1-methyl-4-(carboxyl)pyridinium) or [M(phen)3]2+ (M = Co, Fe and Ni; phen = 1,10-phenanthroline) complexes as structural directing agents and charge-balancing ions, we solvothermally synthesized and structurally characterized four new organic-inorganic hybrid iodoplumbates. Compound K2[Pb(MCP)4]Pb3I10 (1) represents the first K+ and [Pb(MCP)4]2+ co-templated hybrid haloplumbate, and exhibits a curve-like anionic layer of [Pb3I10]n4n-. Compounds [M(phen)3]Pb2I6·CH3CN (M = Co (2), Fe (3) and Ni (4)) have isostructural phases, and feature a one-dimensional (1D) [Pb2I6]n2n- anionic chain characteristic of pyramid-like [PbI5] units. The optical property studies show that compounds 1-4 exhibit semiconductor behaviors with the band gaps of 1.98-2.68 eV. In addition, the title compounds exhibited interesting photoelectrical responsive properties, with the photocurrent density in the order of 1 > 3 > 2 > 4. The thermal stabilities of the title compounds 1-4, as well as the theoretical band structure and density of states (DOS) of compounds 1 and 2 have also been studied.

14.
Inorg Chem ; 59(3): 2062-2069, 2020 Feb 03.
Article in English | MEDLINE | ID: mdl-31951403

ABSTRACT

An organo-templated titanium-oxo sulfate of the formulation (H2nep)[TiO(SO4)2] (denoted as TiOS, nep = N-ethylpiperazine) was synthesized under solvent-free conditions. The framework of TiOS is assembled from the [TiO(SO4)2]n2n- infinite chains interconnected by the H2nep cations through H-bond networks. After thermal treatment under vacuum conditions, the organic template H2nep was partially decomposed and converted into N-doped carbon dots (N-CDs), resulting in the N-CDs@TiOS composite material with retained crystallinity of the parent TiOS. The thermolysis of organic templates generates meso-cavities in the framework, rendering N-CDs@TiOS with a mesoporous structure. Photoelectrochemical and photocatalytic experiments show that the presence of N-CDs substantially improved visible-light-driven photocatalytic activity of N-CDs@TiOS compared to that of TiOS. The template thermolysis strategy gives an effective approach to construct the CDs-sensitized Ti-based mesoporous open-framework materials for visible-light photocatalytic applications.

15.
Dalton Trans ; 48(37): 14044-14048, 2019 Oct 07.
Article in English | MEDLINE | ID: mdl-31490480

ABSTRACT

Two macrocyclic titanium-oxo clusters, namely, [Ti32(µ3-O)8(µ2-O)8(OCH2CH2O)32(OCH2CH2OH)16(BTA)16]·44H2O (BTA = butyrate) and [Ti32(µ3-O)8(µ2-O)8(OCH2CH2O)32(OCH2CH2OH)16(DMBTA)16(HDMBTA)2]·24H2O (DMBTA = 2,2-dimethylbutyrate) were synthesized and structurally characterized. The framework of the Ti32-oxo macrocycle was cyclically fixed by the double-deprotonated ethylene glycolate ligands, which exhibit an inner cavity of about 1.2 × 1.2 nm. The catalytic properties of the Ti32-oxo macrocycles towards the oxidative desulfurization (ODS) reaction were investigated. The structure-dependent catalytic properties towards oxidative desulfurization were observed for the Ti32-oxo macrocycles functionalized with the different carboxylate ligands.

16.
ACS Omega ; 4(1): 1897-1906, 2019 Jan 31.
Article in English | MEDLINE | ID: mdl-31459444

ABSTRACT

MXene as a kind of two-dimensional nanomaterial has aroused people's strong research interest because of its excellent properties. In the present study, we introduced a new poly(vinyl alcohol)/poly(acrylic acid)/Fe3O4/MXene@Ag nanoparticle composite film fabricated by electrospinning and heat treatment as well as self-reduction reaction process. The obtained composite films showed high self-reduction ability because of the incorporation of MXene flakes. The intercalated MXene flakes in the composite nanofibers were evenly distributed, which not only solved the aggregation problem from MXene dispersion but also could self-reduce Ag nanoparticles in situ in composite materials. In addition, the composite nanofiber films exhibited good fiber structure, thermal stability, and magnetic properties. Moreover, the composite nanofiber films demonstrated excellent catalytic ability and cycle stability to 4-nitrophenol and 2-nitroaniline.

17.
ACS Omega ; 4(2): 3946-3953, 2019 Feb 28.
Article in English | MEDLINE | ID: mdl-31459603

ABSTRACT

Two-dimensional metal carbides or nitrides (MXenes) demonstrated wide applications in energy storage, water treatment, electromagnetic shielding, gas/biosensing, and photoelectrochemical catalysis due to their higher specific surface area and excellent conductivity. They also have the advantages of flexible and adjustable components and controllable minimum nanolayer thickness. In this study, a cube-like Co3O4 particle-modified self-assembled MXene (Ti3C2) nanocomposite has been prepared successfully by a simple solvothermal method. The Co3O4 particles are well dispersed on the surface and inner layers of the Ti3C2 sheets, which effectively prevent the restacking of Ti3C2 sheets and form an organized composite structure. The physical properties of these nanocomposites were studied by using XRD, SEM, EDX, TEM, and XPS. The performance of the obtained samples was evaluated as new nanocatalysts for degrading methylene blue and Rhodamine B in batch model experiments. The prepared Mxene-Co3O4 nanocomposites can be well regenerated and reused for eight consecutive cycles, indicating potential wide applications in wastewater treatment and composite materials.

18.
Nanomaterials (Basel) ; 9(7)2019 Jul 12.
Article in English | MEDLINE | ID: mdl-31336924

ABSTRACT

With development of the society, the problem of environmental pollution is becoming more and more serious. There is the urgent need to develop a new type of sustainable green material for degradable pollutants. However, the conventional preparation method is limited by conditions such as cumbersome operation, high energy consumption, and high pollution. Here, a simple method named self-reduction has been proposed, to synthesize highly efficient catalytic nitro compounds and morin self-assembled MXene-Pd nanocomposites. Palladium nanoparticles were grown in situ on MXene nanosheets to form MXene@PdNPs. MXene@PdNPs composites with different reaction times were prepared by adjusting the reduction reaction time. In particular, MXene@PdNPs20 exhibited a high catalytic effect on 4-NP and 2-NA, and the first-order rate constants of the catalysis were 0.180 s-1 and 0.089 s-1, respectively. It should be noted that after eight consecutive catalytic cycles, the conversion to catalyze 4-NP was still greater than 94%, and the conversion to catalyze 2-NA was still greater than 91.8%. Therefore, the research of self-assembled MXene@PdNPs nanocomposites has important potential value for environmental management and sustainable development of human health, and provides new clues for the future research of MXene-based new catalyst materials.

19.
J Org Chem ; 84(16): 10449-10458, 2019 Aug 16.
Article in English | MEDLINE | ID: mdl-31335142

ABSTRACT

By altering the amount of Selectfluor, the highly selective mono- and difluorination of 1,3-dicarbonyl compounds has been achieved, affording a variety of 2-fluoro- and 2,2-difluoro-1,3-dicarbonyl compounds in good to excellent yields. The reaction can be readily performed in aqueous media without any catalyst and base, which features practical and convenient fluorination. Importantly, a gram-scale reaction, transformation of 2-fluoro-1,3-diphenylpropane-1,3-dione to 4-fluoro-1,3,5-triphenyl-1H-pyrazole, and chlorination and bromination of 1,3-dicarbonyl compounds are realized to further exhibit its synthetic utility.

20.
Chem Commun (Camb) ; 55(52): 7442-7445, 2019 Jul 04.
Article in English | MEDLINE | ID: mdl-31165815

ABSTRACT

Herein, we report two nanocluster-based compounds built on an unprecedented cluster [Ba13Sb36Cl34O54]8-, which represents the first example of a discrete alkaline earth (AE)-containing oxochloride cluster and the largest Sb-based oxohalide cluster to date; the proton-conducting property of the compounds was investigated.

SELECTION OF CITATIONS
SEARCH DETAIL
...