Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 128(10): 106402, 2022 Mar 11.
Article in English | MEDLINE | ID: mdl-35333078

ABSTRACT

When Fermi surfaces (FSs) are subject to long-range interactions that are marginal in the renormalization-group sense, Landau Fermi liquids are destroyed, but only barely. With the interaction further screened by particle-hole excitations through one-loop quantum corrections, it has been believed that these marginal Fermi liquids (MFLs) are described by weakly coupled field theories at low energies. In this Letter, we point out a possibility in which higher-loop processes qualitatively change the picture through UV-IR mixing, in which the size of the FS enters as a relevant scale. The UV-IR mixing effect enhances the coupling at low energies, such that the basin of attraction for the weakly coupled fixed point of a (2+1)-dimensional MFL shrinks to a measure-zero set in the low-energy limit. This UV-IR mixing is caused by gapless virtual Cooper pairs that spread over the entire FS through marginal long-range interactions. Our finding signals a possible breakdown of the patch description for the MFL and questions the validity of using the MFL as the base theory in a controlled scheme for non-Fermi liquids that arise from relevant long-range interactions.

2.
Phys Rev Lett ; 124(16): 160502, 2020 Apr 24.
Article in English | MEDLINE | ID: mdl-32383955

ABSTRACT

We show that it is possible to uniquely reconstruct a generic many-body local Hamiltonian from a single pair of generic initial and final states related by evolving with the Hamiltonian for any time interval. We then propose a practical version of the protocol involving multiple pairs of such initial and final states. Using the eigenstate thermalization hypothesis, we provide bounds on the protocol's performance and stability against errors from measurements and in the ansatz of the Hamiltonian. The protocol is efficient (requiring experimental resources scaling polynomially with system size in general and constant with system size given translation symmetry) and thus enables analog and digital quantum simulators to verify implementation of a putative Hamiltonian.

SELECTION OF CITATIONS
SEARCH DETAIL
...