Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Heliyon ; 10(6): e27170, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38500993

ABSTRACT

Background: Malignant tumours, particularly non-small cell lung cancer (NSCLC), pose a significant threat to human health due to their prevalence and lethality. Treatment methods for NSCLC vary greatly among individuals, making it crucial to identify predictive markers. Moreover, during tumour initiation and progression, tumour cells can release signaling molecules to induce polarization of macrophages towards a more tumour friendly M2 phenotype, which can promote tumour growth, metastasis, and drug resistance. Methods: We employed a comprehensive approach, combining bulk RNA-seq and single-cell sequencing analysis. Results: In our study, we used bulk RNA-seq and single-cell sequencing methods to analyze differential cells in NSCLC and adjacent tissues, searching for relevant marker genes that can predict prognosis and drug efficacy. We scrutinized biological phenomena such as macrophage-related gene methylation, copy number variation, and alternative splicing. Additionally, we utilized a co-culture technique of immune and tumour cells to explore the role of these genes in macrophage polarization. Our findings revealed distinct differences in macrophages between cancerous and adjacent tissues. We identified ANP32A, CCL20, ERAP2, MYD88, TMEM126B, TUBB6, and ZNF655 as macrophage-related genes that correlate with NSCLC patient prognosis and immunotherapy efficacy. Notably, ERAP2, TUBB6, CCL20, and TMEM126B can induce macrophage M0 to M2 polarization, promoting tumour proliferation. Conclusion: These findings significantly contribute to our understanding of the NSCLC tumour immune microenvironment. They pave the way for further research into the potential of these genes as targets for regulating tumour occurrence and development.

2.
Cell Death Dis ; 14(11): 718, 2023 11 04.
Article in English | MEDLINE | ID: mdl-37925492

ABSTRACT

Cancer stem cells (CSCs) are believed to be crucial in the initiation, progression, and recurrence of cancer. CSCs are also known to be more resistant to cancer treatments. However, the interaction between CSCs and the immune microenvironment is complex and not fully understood. In current study we used single cell RNA sequence (scRNA-Seq, public dataset) technology to identify the characteristic of CSCs. We found that the lung adenocarcinoma cancer stem population is highly inflammatory and remodels the tumor microenvironment by secreting inflammatory factors, specifically the acute phase protein serum amyloid A (SAA). Next, we developed an ex-vivo autologous patient-derived organoids (PDOs) and peripheral blood mononuclear cells (PBMCs) co-culture model to evaluate the immune biological impact of SAA. We found that SAA not only promotes chemoresistance by inducing cancer stem transformation, but also restricts anti-tumor immunity and promotes tumor fibrosis by driving type 2 immunity, and α-SAA neutralization antibody could restrict treatment resistant and tumor fibrosis. Mechanically, we found that the malignant phenotype induced by SAA is dependent on P2X7 receptor. Our data indicate that cancer stem cells secreted SAA have significant biological impact to promote treatment resistant and tumor fibrosis by driving cancer stemness transformation and type 2 immunity polarization via P2X7 receptor. Notably, α-SAA neutralization antibody shows therapeutic potential by restricting these malignant phenotypes.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Serum Amyloid A Protein , Th2 Cells , Humans , Adenocarcinoma of Lung/immunology , Adenocarcinoma of Lung/pathology , Fibrosis , Leukocytes, Mononuclear/metabolism , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Programmed Cell Death 1 Receptor/metabolism , Receptors, Purinergic P2X7 , Serum Amyloid A Protein/genetics , Serum Amyloid A Protein/metabolism , Tumor Microenvironment , Th2 Cells/immunology
3.
Cancer Biomark ; 38(4): 551-566, 2023.
Article in English | MEDLINE | ID: mdl-38007640

ABSTRACT

BACKGROUND: Hepatocellular carcinoma (HCC) has a high degree of malignancy and poor prognosis. N6-methyladenosine (m6A) modifications and microRNAs (miRNAs) play pivotal roles in tumorigenesis and development. However, the role of m6A-related miRNAs in HCC has not been clarified yet. This study aimed to identify the role of m6A-miRNAs in HCC prognosis through bioinformatics analysis. METHODS: The clinicopathological information and RNA sequencing data of 369 HCC tumor tissues and 49 tumor-adjacent tissues were downloaded from the TCGA database. A total of 23 m6A regulators were extracted to evaluated the m6A-related miRNAs using Pearson's correlation analysis. Then, we selected prognosis-related m6A-miRNAs using a univariate Cox regression model and used the consensus cluster analysis to explore the characteristics of the m6A-miRNAs. The coefficient of the least absolute shrinkage and selection operator (LASSO) Cox regression was applied to construct a prognostic risk score model. The receiver operated characteristic (ROC) analysis was applied to evaluate the prognostic value of the signature. The biological functions of targeted genes were predicted by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Then, to validate the potential predictive value for prognosis, the miRNA expression profiles from the GSE76903 and GSE6857 were used. Single sample Gene Set Enrichment Analysis (ssGSEA) and Estimation of Stromal and Immune cells in Malignant Tumor tissues using Expression data (ESTIMATE) were applied to assess the immune microenvironment of HCC. Additionally, a meta-analysis was used to verify the prognostic value of the m6A-microRNAs. RT-PCR was applied to validated the expression of miRNAs in HCC tissues. Cell viability, transwell assay and RNA m6A dot blot assays of HCC cells was applied to access the function of miR-17-5p. RESULTS: The expression of 48 m6A-related miRNAs was identified and 17 prognostic m6A-miRNAs was discovered. The expression profile of those 17 miRNAs was divided into three clusters, and these clusters were associated with the tumor microenvironment (TME) and prognosis. The nine m6A-related miRNA signature was associated with the prognosis of HCC, the AUC of the ROC was 0.771(TCGA dataset), 0.788(GSE76903) and 0.646(GSE6857). The TME and the expression of immune checkpoint molecules were associated with the risk score. The meta-analysis also validated the prognostic value of the m6A-related miRNAs (miR182-5p (HR:1.58, 95%CI:1.04-2.40) and miR-17-5p (HR:1.58, 95%CI: 1.04-2.40)). The expression of miR-17-5p was upregulated in HCC tissues and miR-17-5p showed an oncogenic role in HCC cells. CONCLUSION: The clinical innovation is the use of m6A-miRNAs as biomarkers for predicting prognosis regarding immunotherapy response in HCC patients.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , MicroRNAs , Humans , Adenosine/genetics , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/therapy , Immunotherapy/methods , Liver Neoplasms/genetics , Liver Neoplasms/therapy , MicroRNAs/genetics , Prognosis , Tumor Microenvironment/genetics
4.
Cell Death Dis ; 14(9): 611, 2023 09 16.
Article in English | MEDLINE | ID: mdl-37716979

ABSTRACT

Development of colorectal cancer (CRC) involves activation of Kirsten rat sarcoma viral oncogene homolog (KRAS) signaling. However, the post-transcriptional regulation of KRAS has yet to be fully characterized. Here, we found that the colorectal neoplasia differentially expressed (CRNDE)/heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNPA2B1) axis was notably elevated in CRC and was strongly associated with poor prognosis of patients, while also significantly promoting CRC cell proliferation and metastasis both in vitro and in vivo. Furthermore, CRNDE maintained the stability of hnRNPA2B1 protein by inhibiting E3 ubiquitin ligase TRIM21 mediated K63 ubiquitination-dependent protein degradation. CRNDE/hnRNPA2B1 axis facilitated the nuclear export and translation of KRAS mRNA, which specifically activated the MAPK signaling pathway, eventually accelerating the malignant progression of CRC. Our findings provided insight into the regulatory network for stable hnRNPA2B1 protein expression, and the molecular mechanisms by which the CRNDE/hnRNPA2B1 axis mediated KRAS nucleocytoplasmic transport and translation, deeply underscoring the bright future of hnRNPA2B1 as a promising biomarker and therapeutic target for CRC. By hindering hnRNPA2B1 from binding to the E3 ubiquitin ligase TRIM21, whose mediated ubiquitin-dependent degradation was thereby inhibited, CRNDE protected the stability of hnRNPA2B1's high protein expression in CRC. Supported by the high level of the oncogenic molecule CRNDE, hnRNPA2B1 bound to KRAS mRNA and promoted KRAS mRNA nucleus export to enter the ribosomal translation program, subsequently activating the MAPK signaling pathway and ultimately accelerating the malignant progression of CRC.


Subject(s)
Colorectal Neoplasms , Proto-Oncogene Proteins p21(ras) , Humans , Active Transport, Cell Nucleus , Proto-Oncogene Proteins p21(ras)/genetics , Cell Proliferation/genetics , MAP Kinase Signaling System , Colorectal Neoplasms/genetics
5.
Dis Markers ; 2023: 1702125, 2023.
Article in English | MEDLINE | ID: mdl-37457886

ABSTRACT

Colorectal cancer (CRC) is a serious threat to human health, and its underlying mechanisms remain to be further explored. Aldolase A (ALDOA) has received increasing attention for its reported association with multiple cancers, but the role and mechanisms of ALDOA in CRC are still unclear. In the current study, high expression levels and enzymatic activity of ALDOA were detected in CRC tissues and cell lines, indicating the clinical significance of ALDOA in human CRC. In addition, silencing ALDOA significantly impaired the proliferation and metastasis of CRC cells in vitro and in vivo. Mechanistically, immunoprecipitation assays and mass spectrometry analysis identified the binding protein COPS6 of ALDOA. Furthermore, the promoting effects of upregulated ALDOA on CRC cell proliferation and metastasis were inhibited by COPS6 depletion, demonstrating COPS6 was required for ALDOA in mediating CRC progress. Moreover, the epithelial-mesenchymal transition (EMT) program and MAPK signaling pathway were found to be activated by ALDOA overexpression as well. In summary, our findings suggested that ALDOA facilitated the proliferation and metastasis of CRC by binding and regulating COPS6, inducing EMT, and activating the mitogen-activated protein kinase (MAPK) signaling pathway. The present study provided evidence for ALDOA as a promising potential biomarker for CRC.


Subject(s)
Colorectal Neoplasms , Mitogen-Activated Protein Kinases , Humans , Fructose-Bisphosphate Aldolase/genetics , Fructose-Bisphosphate Aldolase/metabolism , Cell Line, Tumor , Cell Movement , Signal Transduction , Cell Proliferation , Colorectal Neoplasms/pathology , Epithelial-Mesenchymal Transition , Gene Expression Regulation, Neoplastic , COP9 Signalosome Complex/metabolism , Adaptor Proteins, Signal Transducing/metabolism
6.
Cancer Med ; 12(5): 5833-5845, 2023 03.
Article in English | MEDLINE | ID: mdl-36266920

ABSTRACT

PURPOSE: Adriamycin is a novel chemotherapeutic agent of great benefit for treating breast cancer. However, adriamycin -resistance remains a major obstacle. The vital Glutathione transferase P1 (GSTPi) inhibitor 6-(7-nitro-2,1,3-benzoxadiazol-4-ylthio) hexanol (NBDHEX) has recently shown antitumor activity in various cancers. In this study, we analyzed the effect of NBDHEX and adriamycin combination against breast cancer in vitro and in vivo. METHODS: CCK-8 assay was performed to test cell viability. The location and expression level of GSTpi was determined by immunofluorescence and Western blot in cells and immunohistochemistry staining in tissues. The enzyme activity test was applied to detect the effect of NBDHEX on the activity of GSTpi. The apoptosis related proteins' expression was tested using Western blot. The phosphorylation sites of GSTpi were detected by mass spectrometry. Antitumor effects of single treatment or co-administration of adriamycin and NBDHEX were evaluated in nude mice. RESULTS: NBDHEX treatment inhibited GSTpi enzyme activity and co-administration of adriamycin and NBDHEX promoted apoptosis of adriamycin-resistance breast cancer cell. Moreover, drug combination of NBDHEX and adriamycin significantly enhanced tumor growth inhibition compared with single agent. CONCLUSION: NBDHEX serves as a good candidate for combination with adriamycin, offering new insights for breast cancer treatment.


Subject(s)
Breast Neoplasms , Doxorubicin , Glutathione S-Transferase pi , Oxadiazoles , Animals , Mice , Breast Neoplasms/drug therapy , Antineoplastic Agents/therapeutic use , Mice, Nude , Doxorubicin/therapeutic use
7.
Front Cell Dev Biol ; 10: 864101, 2022.
Article in English | MEDLINE | ID: mdl-35652091

ABSTRACT

ADP-ribosylation is a well-established post-translational modification that is inherently connected to diverse processes, including DNA repair, transcription, and cell signaling. The crucial roles of mono-ADP-ribosyltransferases (mono-ARTs) in biological processes have been identified in recent years by the comprehensive use of genetic engineering, chemical genetics, and proteomics. This review provides an update on current methodological advances in the study of these modifiers. Furthermore, the review provides details on the function of mono ADP-ribosylation. Several mono-ARTs have been implicated in the development of cancer, and this review discusses the role and therapeutic potential of some mono-ARTs in cancer.

8.
J Cell Mol Med ; 26(4): 977-989, 2022 02.
Article in English | MEDLINE | ID: mdl-35014178

ABSTRACT

MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression at the post-transcriptional level. MiRNAs are involved in the development and progression of a wide range of cancers. Among such cancer-associated miRNAs, miR-381 has been a major focus of research. The expression pattern and role of miR-381 vary among different cancer types. MiR-381 modulates various cellular behaviours in cancer, including proliferation, apoptosis, cell cycle progression, migration and invasion. MiR-381 is also involved in angiogenesis and lymphangiogenesis, as well as in the resistance to chemotherapy and radiotherapy. MiR-381 itself is regulated by several factors, such as long noncoding RNAs, circular RNAs and cytokines. Aberrant expression of miR-381 in blood samples indicates that it can be used as a diagnostic marker in cancer. Tissue miR-381 expression may serve as a prognostic factor for the clinicopathological characteristics of cancers and survival of patients. Metformin and icaritin regulate miR-381 expression and present anticancer properties. This review comprehensively summarizes the effect of miR-381 on tumour biological behaviours, as well as the clinical application potential of miR-381 for the treatment of cancer.


Subject(s)
MicroRNAs , Neoplasms , RNA, Long Noncoding , Cell Proliferation , Gene Expression Regulation, Neoplastic , Humans , MicroRNAs/metabolism , Neoplasms/pathology , RNA, Circular
9.
Am J Transl Res ; 13(12): 13567-13578, 2021.
Article in English | MEDLINE | ID: mdl-35035697

ABSTRACT

PURPOSE: Colorectal cancer (CRC) is one of the most frequent tumors and causes of mortality worldwide. Ubiquitin ligase was reported to regulate multiple cellular processes, including tumorigenesis. As ubiquitin E3 ligases, RING-finger proteins play a key role in physiological and pathophysiological processes. METHODS: We compared the expression levels of RNF128 in CRC tissues by western-blotting and qRT-PCR. Knockdown and overexpression of RNF128 were performed to examine its effect on proliferation and metastasis of CRC cells. Using western blot and co-immunoprecipitation assays, we explored the possible mechanisms underlying the effect of RNF128 in CRC cells. RESULTS: We found that the expression level of RNF128 was correlated with the CRC tumorigenicity. Overexpression or knockdown of RNF128 suppressed or elevated CRC cell proliferation, migration and invasion, respectively. We further determined that RNF128 regulated ß-catenin ubiquitination and thus inhibited Wnt/ß-catenin signaling in CRC cells. CONCLUSION: Our research demonstrated that RNF128 inhibited cell proliferation and metastasis of CRC cells via Wnt/ß-catenin signaling-mediated deubiquitination.

10.
Front Oncol ; 11: 790967, 2021.
Article in English | MEDLINE | ID: mdl-34976832

ABSTRACT

Poly ADP ribose polymerases (PARPs) catalyze the modification of acceptor proteins, DNA, or RNA with ADP-ribose, which plays an important role in maintaining genomic stability and regulating signaling pathways. The rapid development of PARP1/2 inhibitors for the treatment of ovarian and breast cancers has advanced research on other PARP family members for the treatment of cancer. This paper reviews the role of PARP family members (except PARP1/2 and tankyrases) in cancer and the underlying regulatory mechanisms, which will establish a molecular basis for the clinical application of PARPs in the future.

11.
J Cancer ; 11(24): 7216-7223, 2020.
Article in English | MEDLINE | ID: mdl-33193885

ABSTRACT

Gefitinib, a first-generation EGFR tyrosine kinase inhibitor (EGFR-TKI), is recommended for treatment of non-small cell lung cancer (NSCLC) patients who harbor activating EGFR mutations. However, the tumors of most patients initially sensitive to gefitinib will develop resistance within several months of therapy. Drug resistance is a major obstacle to NSCLC treatment. The novel glutathione transferase P1 (GSTPi) inhibitor 6-(7-nitro-2, 1, 3-benzoxadiazol-4-ylthio) hexanol (NBDHEX) has recently been shown to be active against tumors. In this study, we investigated the in vitro and in vivo efficacy of NBDHEX against NSCLC. Treatment with NBDHEX inhibited GSTpi enzymatic activity and promoted apoptosis of gefinitb-resistant NSCLC cells. Moreover, NBDHEX reduced tumor growth in mice. These findings indicated that NBDHEX is a good candidate for treatment of NSCLC patients, and that NBDHEX offers a new approach to cancer therapy.

12.
Am J Transl Res ; 12(10): 6015-6026, 2020.
Article in English | MEDLINE | ID: mdl-33194011

ABSTRACT

Metabolic reprogramming of tumor cells plays a critical role in the tumor microenvironment, including disorder of lipid metabolism. Recently, lipid metabolism has received increasing attention in cancer research. The proteins of relevant evolutionary and lymphoid interest (PRELI) domain containing family contains 6 proteins. Functionally, the PRELI-like family proteins were mainly involved in mitochondrial lipid transport and correlated with several types of diseases and malignant tumors. Here we review current knowledge of the functions, structures, biological functions and underlying mechanisms of the PRELI-like family proteins in cancer progression, which provide insights into the clinical translational application.

13.
Am J Transl Res ; 12(9): 4873-4884, 2020.
Article in English | MEDLINE | ID: mdl-33042395

ABSTRACT

MicroRNAs (miRNAs) are short non-coding RNAs, approximately 22 nucleotides in length, and involved in the post-transcriptional regulation of gene expression. MiRNAs play fundamental roles in many biological processes such as the development and progression of tumors. In this review, we briefly describe the expression of miR-187 in various types of cancer and discuss the role of miR-187 in cancer development and drug resistance. It is also possible to take miR-187 as an important indicator of diagnosis and prognosis of tumors.

SELECTION OF CITATIONS
SEARCH DETAIL
...