Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 175
Filter
1.
Cell ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38968937

ABSTRACT

Immune tolerance mechanisms are shared in cancer and pregnancy. Through cross-analyzing single-cell RNA-sequencing data from multiple human cancer types and the maternal-fetal interface, we found B7-H4 (VTCN1) is an onco-fetal immune tolerance checkpoint. We showed that genetic deficiency of B7-H4 resulted in immune activation and fetal resorption in allogeneic pregnancy models. Analogously, B7-H4 contributed to MPA/DMBA-induced breast cancer progression, accompanied by CD8+ T cell exhaustion. Female hormone screening revealed that progesterone stimulated B7-H4 expression in placental and breast cancer cells. Mechanistically, progesterone receptor (PR) bound to a newly identified -58 kb enhancer, thereby mediating B7-H4 transcription via the PR-P300-BRD4 axis. PR antagonist or BRD4 degrader potentiated immunotherapy in a murine B7-H4+ breast cancer model. Thus, our work unravels a mechanistic and biological connection of a female sex hormone (progesterone) to onco-fetal immune tolerance via B7-H4 and suggests that the PR-P300-BRD4 axis is targetable for treating B7-H4+ cancer.

2.
Nat Commun ; 15(1): 5487, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38942798

ABSTRACT

Cancer treatment continues to shift from utilizing traditional therapies to targeted ones, such as protein kinase inhibitors and immunotherapy. Mobilizing dendritic cells (DC) and other myeloid cells with antigen presenting and cancer cell killing capacities is an attractive but not fully exploited approach. Here, we show that PIKFYVE is a shared gene target of clinically relevant protein kinase inhibitors and high expression of this gene in DCs is associated with poor patient response to immune checkpoint blockade (ICB) therapy. Genetic and pharmacological studies demonstrate that PIKfyve ablation enhances the function of CD11c+ cells (predominantly dendritic cells) via selectively altering the non-canonical NF-κB pathway. Both loss of Pikfyve in CD11c+ cells and treatment with apilimod, a potent and specific PIKfyve inhibitor, restrained tumor growth, enhanced DC-dependent T cell immunity, and potentiated ICB efficacy in tumor-bearing mouse models. Furthermore, the combination of a vaccine adjuvant and apilimod reduced tumor progression in vivo. Thus, PIKfyve negatively regulates the function of CD11c+ cells, and PIKfyve inhibition has promise for cancer immunotherapy and vaccine treatment strategies.


Subject(s)
CD11c Antigen , Dendritic Cells , Morpholines , Phosphatidylinositol 3-Kinases , Animals , Female , Humans , Mice , CD11c Antigen/metabolism , Cell Line, Tumor , Dendritic Cells/immunology , Dendritic Cells/metabolism , Dendritic Cells/drug effects , Hydrazones , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Immunotherapy/methods , Mice, Inbred C57BL , Morpholines/pharmacology , Neoplasms/immunology , Neoplasms/genetics , Neoplasms/therapy , NF-kappa B/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Pyrimidines , T-Lymphocytes/immunology , Male
3.
Cancer Med ; 13(12): e7253, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38899720

ABSTRACT

PURPOSE: Real world evidence is crucial to understanding the diffusion of new oncologic therapies, monitoring cancer outcomes, and detecting unexpected toxicities. In practice, real world evidence is challenging to collect rapidly and comprehensively, often requiring expensive and time-consuming manual case-finding and annotation of clinical text. In this Review, we summarise recent developments in the use of artificial intelligence to collect and analyze real world evidence in oncology. METHODS: We performed a narrative review of the major current trends and recent literature in artificial intelligence applications in oncology. RESULTS: Artificial intelligence (AI) approaches are increasingly used to efficiently phenotype patients and tumors at large scale. These tools also may provide novel biological insights and improve risk prediction through multimodal integration of radiographic, pathological, and genomic datasets. Custom language processing pipelines and large language models hold great promise for clinical prediction and phenotyping. CONCLUSIONS: Despite rapid advances, continued progress in computation, generalizability, interpretability, and reliability as well as prospective validation are needed to integrate AI approaches into routine clinical care and real-time monitoring of novel therapies.


Subject(s)
Artificial Intelligence , Medical Oncology , Neoplasms , Humans , Medical Oncology/methods , Medical Oncology/trends , Neoplasms/therapy
4.
Immunity ; 57(5): 941-956, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38749397

ABSTRACT

Ferroptosis is a type of regulated cell death that drives the pathophysiology of many diseases. Oxidative stress is detectable in many types of regulated cell death, but only ferroptosis involves lipid peroxidation and iron dependency. Ferroptosis originates and propagates from several organelles, including the mitochondria, endoplasmic reticulum, Golgi, and lysosomes. Recent data have revealed that immune cells can both induce and undergo ferroptosis. A mechanistic understanding of how ferroptosis regulates immunity is critical to understanding how ferroptosis controls immune responses and how this is dysregulated in disease. Translationally, more work is needed to produce ferroptosis-modulating immunotherapeutics. This review focuses on the role of ferroptosis in immune-related diseases, including infection, autoimmune diseases, and cancer. We discuss how ferroptosis is regulated in immunity, how this regulation contributes to disease pathogenesis, and how targeting ferroptosis may lead to novel therapies.


Subject(s)
Ferroptosis , Iron , Ferroptosis/immunology , Humans , Animals , Iron/metabolism , Neoplasms/immunology , Neoplasms/metabolism , Lipid Peroxidation/immunology , Autoimmune Diseases/immunology , Immunity , Oxidative Stress/immunology , Mitochondria/metabolism , Mitochondria/immunology
5.
Cell Rep ; 43(3): 113942, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38489266

ABSTRACT

Tumor-associated macrophages (TAMs) shape tumor immunity and therapeutic efficacy. However, it is poorly understood whether and how post-translational modifications (PTMs) intrinsically affect the phenotype and function of TAMs. Here, we reveal that peptidylarginine deiminase 4 (PAD4) exhibits the highest expression among common PTM enzymes in TAMs and negatively correlates with the clinical response to immune checkpoint blockade. Genetic and pharmacological inhibition of PAD4 in macrophages prevents tumor progression in tumor-bearing mouse models, accompanied by an increase in macrophage major histocompatibility complex (MHC) class II expression and T cell effector function. Mechanistically, PAD4 citrullinates STAT1 at arginine 121, thereby promoting the interaction between STAT1 and protein inhibitor of activated STAT1 (PIAS1), and the loss of PAD4 abolishes this interaction, ablating the inhibitory role of PIAS1 in the expression of MHC class II machinery in macrophages and enhancing T cell activation. Thus, the PAD4-STAT1-PIAS1 axis is an immune restriction mechanism in macrophages and may serve as a cancer immunotherapy target.


Subject(s)
Hydrolases , Protein Processing, Post-Translational , Mice , Animals , Protein-Arginine Deiminases/metabolism , Protein-Arginine Deiminase Type 4/genetics , Protein-Arginine Deiminase Type 4/metabolism , Hydrolases/metabolism , Histocompatibility Antigens Class II/metabolism , Macrophages/metabolism
6.
bioRxiv ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38464258

ABSTRACT

The modern armamentarium for cancer treatment includes immunotherapy and targeted therapy, such as protein kinase inhibitors. However, the mechanisms that allow cancer-targeting drugs to effectively mobilize dendritic cells (DCs) and affect immunotherapy are poorly understood. Here, we report that among shared gene targets of clinically relevant protein kinase inhibitors, high PIKFYVE expression was least predictive of complete response in patients who received immune checkpoint blockade (ICB). In immune cells, high PIKFYVE expression in DCs was associated with worse response to ICB. Genetic and pharmacological studies demonstrated that PIKfyve ablation enhanced DC function via selectively altering the alternate/non-canonical NF-κB pathway. Both loss of Pikfyve in DCs and treatment with apilimod, a potent and specific PIKfyve inhibitor, restrained tumor growth, enhanced DC-dependent T cell immunity, and potentiated ICB efficacy in tumor-bearing mouse models. Furthermore, the combination of a vaccine adjuvant and apilimod reduced tumor progression in vivo. Thus, PIKfyve negatively controls DCs, and PIKfyve inhibition has promise for cancer immunotherapy and vaccine treatment strategies.

7.
Autophagy ; 20(6): 1213-1246, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38442890

ABSTRACT

Macroautophagy/autophagy is a complex degradation process with a dual role in cell death that is influenced by the cell types that are involved and the stressors they are exposed to. Ferroptosis is an iron-dependent oxidative form of cell death characterized by unrestricted lipid peroxidation in the context of heterogeneous and plastic mechanisms. Recent studies have shed light on the involvement of specific types of autophagy (e.g. ferritinophagy, lipophagy, and clockophagy) in initiating or executing ferroptotic cell death through the selective degradation of anti-injury proteins or organelles. Conversely, other forms of selective autophagy (e.g. reticulophagy and lysophagy) enhance the cellular defense against ferroptotic damage. Dysregulated autophagy-dependent ferroptosis has implications for a diverse range of pathological conditions. This review aims to present an updated definition of autophagy-dependent ferroptosis, discuss influential substrates and receptors, outline experimental methods, and propose guidelines for interpreting the results.Abbreviation: 3-MA:3-methyladenine; 4HNE: 4-hydroxynonenal; ACD: accidentalcell death; ADF: autophagy-dependentferroptosis; ARE: antioxidant response element; BH2:dihydrobiopterin; BH4: tetrahydrobiopterin; BMDMs: bonemarrow-derived macrophages; CMA: chaperone-mediated autophagy; CQ:chloroquine; DAMPs: danger/damage-associated molecular patterns; EMT,epithelial-mesenchymal transition; EPR: electronparamagnetic resonance; ER, endoplasmic reticulum; FRET: Försterresonance energy transfer; GFP: green fluorescent protein;GSH: glutathione;IF: immunofluorescence; IHC: immunohistochemistry; IOP, intraocularpressure; IRI: ischemia-reperfusion injury; LAA: linoleamide alkyne;MDA: malondialdehyde; PGSK: Phen Green™ SK;RCD: regulatedcell death; PUFAs: polyunsaturated fatty acids; RFP: red fluorescentprotein;ROS: reactive oxygen species; TBA: thiobarbituricacid; TBARS: thiobarbituric acid reactive substances; TEM:transmission electron microscopy.


Subject(s)
Autophagy , Ferroptosis , Ferroptosis/physiology , Humans , Autophagy/physiology , Animals , Consensus
8.
Nat Commun ; 15(1): 972, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38302476

ABSTRACT

Epigenetic modulation is well established in hematologic malignancies but to a lesser degree in solid tumors. Here we report the results of a phase Ib/II study of guadecitabine and durvalumab in advanced clear cell renal cell carcinoma (ccRCC; NCT03308396). Patients received guadecitabine (starting at 60 mg/m2 subcutaneously on days 1-5 with de-escalation to 45 mg/m2 in case of dose limiting toxicity) with durvalumab (1500 mg intravenously on day 8). The study enrolled 57 patients, 6 in phase Ib with safety being the primary objective and 51in phase II, comprising 2 cohorts: 36 patients in Cohort 1 were treatment naive to checkpoint inhibitors (CPI) with 0-1 prior therapies and 15 patients in Cohort 2 were treated with up to two prior systemic therapies including one CPI. The combination of guadecitabine 45 mg/m2 with durvalumab 1500 mg was deemed safe. The primary objective of overall response rate (ORR) in cohort 1 was 22%. Sixteen patients (44%) experienced stable disease (SD). Secondary objectives included overall survival (OS), duration of response, progression-free survival (PFS), clinical benefit rate, and safety as well as ORR for Cohort 2. Median PFS for cohort 1 and cohort 2 were 14.26 and 3.91 months respectively. Median OS was not reached. In cohort 2, one patient achieved a partial response and 60% achieved SD. Asymptomatic neutropenia was the most common adverse event. Even though the trial did not meet the primary objective in cohort 1, the tolerability and PFS signal in CPI naive patients are worth further investigation.


Subject(s)
Antibodies, Monoclonal , Carcinoma, Renal Cell , Humans , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/genetics , Azacitidine/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects
9.
Annu Rev Immunol ; 42(1): 521-550, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38382538

ABSTRACT

Immune checkpoint blockade (ICB) induces a remarkable and durable response in a subset of cancer patients. However, most patients exhibit either primary or acquired resistance to ICB. This resistance arises from a complex interplay of diverse dynamic mechanisms within the tumor microenvironment (TME). These mechanisms include genetic, epigenetic, and metabolic alterations that prevent T cell trafficking to the tumor site, induce immune cell dysfunction, interfere with antigen presentation, drive heightened expression of coinhibitory molecules, and promote tumor survival after immune attack. The TME worsens ICB resistance through the formation of immunosuppressive networks via immune inhibition, regulatory metabolites, and abnormal resource consumption. Finally, patient lifestyle factors, including obesity and microbiome composition, influence ICB resistance. Understanding the heterogeneity of cellular, molecular, and environmental factors contributing to ICB resistance is crucial to develop targeted therapeutic interventions that enhance the clinical response. This comprehensive overview highlights key mechanisms of ICB resistance that may be clinically translatable.


Subject(s)
Drug Resistance, Neoplasm , Immune Checkpoint Inhibitors , Immunotherapy , Neoplasms , Tumor Microenvironment , Humans , Tumor Microenvironment/immunology , Neoplasms/immunology , Neoplasms/therapy , Neoplasms/metabolism , Neoplasms/etiology , Drug Resistance, Neoplasm/immunology , Animals , Immunotherapy/methods , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Epigenesis, Genetic
10.
Nat Cell Biol ; 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38424270

ABSTRACT

Ferroptosis, an intricately regulated form of cell death characterized by uncontrolled lipid peroxidation, has garnered substantial interest since this term was first coined in 2012. Recent years have witnessed remarkable progress in elucidating the detailed molecular mechanisms that govern ferroptosis induction and defence, with particular emphasis on the roles of heterogeneity and plasticity. In this Review, we discuss the molecular ecosystem of ferroptosis, with implications that may inform and enable safe and effective therapeutic strategies across a broad spectrum of diseases.

11.
Science ; 383(6678): 62-70, 2024 01 05.
Article in English | MEDLINE | ID: mdl-38175892

ABSTRACT

Immune checkpoint inhibitors can stimulate antitumor immunity but can also induce toxicities termed immune-related adverse events (irAEs). Colitis is a common and severe irAE that can lead to treatment discontinuation. Mechanistic understanding of gut irAEs has been hampered because robust colitis is not observed in laboratory mice treated with checkpoint inhibitors. We report here that this limitation can be overcome by using mice harboring the microbiota of wild-caught mice, which develop overt colitis following treatment with anti-CTLA-4 antibodies. Intestinal inflammation is driven by unrestrained activation of IFNγ-producing CD4+ T cells and depletion of peripherally induced regulatory T cells through Fcγ receptor signaling. Accordingly, anti-CTLA-4 nanobodies that lack an Fc domain can promote antitumor responses without triggering colitis. This work suggests a strategy for mitigating gut irAEs while preserving antitumor stimulating effects of CTLA-4 blockade.


Subject(s)
CD4-Positive T-Lymphocytes , Colitis , Immune Checkpoint Inhibitors , Lymphocyte Activation , Microbiota , Receptors, IgG , Animals , Mice , CD4-Positive T-Lymphocytes/immunology , Colitis/etiology , Colitis/microbiology , CTLA-4 Antigen/antagonists & inhibitors , Microbiota/immunology , Receptors, IgG/immunology , Immune Checkpoint Inhibitors/adverse effects , Mice, Inbred C57BL
13.
Proc Natl Acad Sci U S A ; 120(49): e2314416120, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38011559

ABSTRACT

Despite the remarkable clinical success of immunotherapies in a subset of cancer patients, many fail to respond to treatment and exhibit resistance. Here, we found that genetic or pharmacologic inhibition of the lipid kinase PIKfyve, a regulator of autophagic flux and lysosomal biogenesis, upregulated surface expression of major histocompatibility complex class I (MHC-I) in cancer cells via impairing autophagic flux, resulting in enhanced cancer cell killing mediated by CD8+ T cells. Genetic depletion or pharmacologic inhibition of PIKfyve elevated tumor-specific MHC-I surface expression, increased intratumoral functional CD8+ T cells, and slowed tumor progression in multiple syngeneic mouse models. Importantly, enhanced antitumor responses by Pikfyve-depletion were CD8+ T cell- and MHC-I-dependent, as CD8+ T cell depletion or B2m knockout rescued tumor growth. Furthermore, PIKfyve inhibition improved response to immune checkpoint blockade (ICB), adoptive cell therapy, and a therapeutic vaccine. High expression of PIKFYVE was also predictive of poor response to ICB and prognostic of poor survival in ICB-treated cohorts. Collectively, our findings show that targeting PIKfyve enhances immunotherapies by elevating surface expression of MHC-I in cancer cells, and PIKfyve inhibitors have potential as agents to increase immunotherapy response in cancer patients.


Subject(s)
CD8-Positive T-Lymphocytes , Neoplasms , Mice , Animals , Humans , Genes, MHC Class I , Histocompatibility Antigens Class I , Immunotherapy/methods , Lipids , Neoplasms/genetics , Neoplasms/therapy
14.
Cell Rep ; 42(8): 112965, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37597185

ABSTRACT

Disruption of antigen presentation via loss of major histocompatibility complex (MHC) expression is a strategy whereby cancer cells escape immune surveillance and develop resistance to immunotherapy. Here, we develop the personalized genomics algorithm Hapster and accurately call somatic mutations within the MHC genes of 10,001 primary and 2,199 metastatic tumors, creating a catalog of 1,663 non-synonymous mutations that provide key insights into MHC mutagenesis. We find that MHC class I genes are among the most frequently mutated genes in both primary and metastatic tumors, while MHC class II mutations are more restricted. Recurrent deleterious mutations are found within haplotype- and cancer-type-specific hotspots associated with distinct mutational processes. Functional classification of MHC residues reveals significant positive selection for mutations disruptive to the B2M, peptide, and T cell binding interfaces, as well as to MHC chaperones.


Subject(s)
Histocompatibility Antigens Class I , Neoplasms , Humans , Histocompatibility Antigens Class I/metabolism , HLA Antigens , Neoplasms/genetics , T-Lymphocytes , Histocompatibility Antigens Class II/genetics , Mutation/genetics
15.
Cell Metab ; 35(7): 1101-1113, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37390822

ABSTRACT

Metabolic programming in the tumor microenvironment (TME) alters tumor immunity and immunotherapeutic response in tumor-bearing mice and patients with cancer. Here, we review immune-related functions of core metabolic pathways, key metabolites, and crucial nutrient transporters in the TME, discuss their metabolic, signaling, and epigenetic impact on tumor immunity and immunotherapy, and explore how these insights can be applied to the development of more effective modalities to potentiate the function of T cells and sensitize tumor cell receptivity to immune attack, thereby overcoming therapeutic resistance.


Subject(s)
Neoplasms , Tumor Microenvironment , Mice , Animals , Immunotherapy , Neoplasms/metabolism , T-Lymphocytes/metabolism , Metabolic Networks and Pathways
16.
Oncoimmunology ; 12(1): 2222560, 2023.
Article in English | MEDLINE | ID: mdl-37363104

ABSTRACT

Focal radiation therapy (RT) has attracted considerable attention as a combinatorial partner for immunotherapy (IT), largely reflecting a well-defined, predictable safety profile and at least some potential for immunostimulation. However, only a few RT-IT combinations have been tested successfully in patients with cancer, highlighting the urgent need for an improved understanding of the interaction between RT and IT in both preclinical and clinical scenarios. Every year since 2016, ImmunoRad gathers experts working at the interface between RT and IT to provide a forum for education and discussion, with the ultimate goal of fostering progress in the field at both preclinical and clinical levels. Here, we summarize the key concepts and findings presented at the Sixth Annual ImmunoRad conference.


Subject(s)
Neoplasms , Humans , Combined Modality Therapy , Neoplasms/radiotherapy , Neoplasms/drug therapy , Immunotherapy
17.
Ann N Y Acad Sci ; 1523(1): 38-50, 2023 05.
Article in English | MEDLINE | ID: mdl-36960914

ABSTRACT

Immunometabolism considers the relationship between metabolism and immunity. Typically, researchers focus on either the metabolic pathways within immune cells that affect their function or the impact of immune cells on systemic metabolism. A more holistic approach that considers both these viewpoints is needed. On September 5-8, 2022, experts in the field of immunometabolism met for the Keystone symposium "Immunometabolism at the Crossroads of Obesity and Cancer" to present recent research across the field of immunometabolism, with the setting of obesity and cancer as an ideal example of the complex interplay between metabolism, immunity, and cancer. Speakers highlighted new insights on the metabolic links between tumor cells and immune cells, with a focus on leveraging unique metabolic vulnerabilities of different cell types in the tumor microenvironment as therapeutic targets and demonstrated the effects of diet, the microbiome, and obesity on immune system function and cancer pathogenesis and therapy. Finally, speakers presented new technologies to interrogate the immune system and uncover novel metabolic pathways important for immunity.


Subject(s)
Neoplasms , Humans , Neoplasms/metabolism , Immune System , Metabolic Networks and Pathways , Obesity/therapy , Obesity/metabolism , Tumor Microenvironment
18.
Cancer Cell ; 41(2): 304-322.e7, 2023 02 13.
Article in English | MEDLINE | ID: mdl-36638784

ABSTRACT

Immune checkpoint blockade (ICB) can produce durable responses against cancer. We and others have found that a subset of patients experiences paradoxical rapid cancer progression during immunotherapy. It is poorly understood how tumors can accelerate their progression during ICB. In some preclinical models, ICB causes hyperprogressive disease (HPD). While immune exclusion drives resistance to ICB, counterintuitively, patients with HPD and complete response (CR) following ICB manifest comparable levels of tumor-infiltrating CD8+ T cells and interferon γ (IFNγ) gene signature. Interestingly, patients with HPD but not CR exhibit elevated tumoral fibroblast growth factor 2 (FGF2) and ß-catenin signaling. In animal models, T cell-derived IFNγ promotes tumor FGF2 signaling, thereby suppressing PKM2 activity and decreasing NAD+, resulting in reduction of SIRT1-mediated ß-catenin deacetylation and enhanced ß-catenin acetylation, consequently reprograming tumor stemness. Targeting the IFNγ-PKM2-ß-catenin axis prevents HPD in preclinical models. Thus, the crosstalk of core immunogenic, metabolic, and oncogenic pathways via the IFNγ-PKM2-ß-catenin cascade underlies ICB-associated HPD.


Subject(s)
Neoplasms , beta Catenin , Animals , CD8-Positive T-Lymphocytes , Fibroblast Growth Factor 2 , Neoplasms/therapy , Neoplasms/pathology , Disease Progression , Interferon-gamma , Immunotherapy/methods
19.
Nat Biomed Eng ; 7(1): 72-84, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36564626

ABSTRACT

The effectivity of cancer immunotherapies is hindered by immunosuppressive tumour microenvironments that are poorly infiltrated by effector T cells and natural killer cells. In infection and autoimmune disease, the recruitment and activation of effector immune cells is coordinated by pro-inflammatory T helper 17 (TH17) cells. Here we show that pathogen-mimicking hollow nanoparticles displaying mannan (a polysaccharide that activates TH17 cells in microbial cell walls) limit the fraction of regulatory T cells and induce TH17-cell-mediated anti-tumour responses. The nanoparticles activate the pattern-recognition receptor Dectin-2 and Toll-like receptor 4 in dendritic cells, and promote the differentiation of CD4+ T cells into the TH17 phenotype. In mice, intra-tumoural administration of the nanoparticles decreased the fraction of regulatory T cells in the tumour while markedly increasing the fractions of TH17 cells (and the levels of TH17-cell-associated cytokines), CD8+ T cells, natural killer cells and M1-like macrophages. The anti-tumoural activity of the effector cells was amplified by an agonistic antibody against the co-stimulatory receptor OX40 in multiple mouse models. Nanomaterials that induce TH17-cell-mediated immune responses may have therapeutic potential.


Subject(s)
CD8-Positive T-Lymphocytes , Nanoparticles , Animals , Mice , Cell Differentiation , Cytokines , T-Lymphocytes, Regulatory , Th17 Cells/immunology
20.
Sci Immunol ; 7(77): eabm8182, 2022 11 25.
Article in English | MEDLINE | ID: mdl-36399539

ABSTRACT

T cell proliferation and cytokine production are bioenergetically and biosynthetically costly. The inability to meet these metabolic demands results in altered differentiation, accompanied by impaired effector function, and attrition of the immune response. Interleukin-17-producing CD4 T cells (TH17s) are mediators of host defense, autoimmunity, and antitumor immunity in the setting of adoptive T cell therapy. TH17s are long-lived cells that require mitochondrial oxidative phosphorylation (OXPHOS) for effector function in vivo. Considering that TH17s polarized under standardized culture conditions are predominately glycolytic, little is known about how OXPHOS regulates TH17 processes, such as their ability to persist and thus contribute to protracted immune responses. Here, we modified standardized culture medium and identified a culture system that reliably induces OXPHOS dependence in TH17s. We found that TH17s cultured under OXPHOS conditions metabolically resembled their in vivo counterparts, whereas glycolytic cultures were dissimilar. OXPHOS TH17s exhibited increased mitochondrial fitness, glutamine anaplerosis, and an antiapoptotic phenotype marked by high BCL-XL and low BIM. Limited mitophagy, mediated by mitochondrial fusion regulator OPA-1, was critical to apoptotic resistance in OXPHOS TH17s. By contrast, glycolytic TH17s exhibited more mitophagy and an imbalance in BCL-XL to BIM, thereby priming them for apoptosis. In addition, through adoptive transfer experiments, we demonstrated that OXPHOS protected TH17s from apoptosis while enhancing their persistence in the periphery and tumor microenvironment in a murine model of melanoma. Together, our work demonstrates how metabolism regulates TH17 cell fate and highlights the potential for therapies that target OXPHOS in TH17-driven diseases.


Subject(s)
Oxidative Phosphorylation , Tumor Microenvironment , Mice , Animals , Mitochondria/metabolism , Glycolysis/genetics , Cell Differentiation
SELECTION OF CITATIONS
SEARCH DETAIL
...