Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 846: 157505, 2022 Nov 10.
Article in English | MEDLINE | ID: mdl-35870592

ABSTRACT

We investigated the long-term effects (6 years) of sediment improvement and submerged plant restoration of a subtropical shallow urban lake, Hangzhou West Lake China. To reveal the lake ecosystems variations, we analyzed the sediment properties, submerged macrophyte characteristics, sediment microorganisms, and benthic macroinvertebrate communities from 2015 to 2020. The ecological restoration project decreased sediment TP and OM, increased submerged macrophyte biomass and sediment microbial diversity, and improved the benthic macroinvertebrate communities in the restored area. The sediment TP decreased from 2.94 mg/g in 2015 to 1.33 mg/g in 2020. The sediment OM of the restored area decreased from 27.44 % in 2015 to 8.08 % in 2020. Principal component analysis (PCA) confirmed that the restoration improved the sediment conditions, making it suitable for the growth of submerged macrophytes, and then sped up the restoration and reconstruction of the lake ecosystem. These results have significant implications on the ecological management of shallow lakes.


Subject(s)
Ecosystem , Lakes , Biomass , China , Longitudinal Studies , Plants
2.
Environ Sci Pollut Res Int ; 29(54): 81760-81776, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35737264

ABSTRACT

In this work, second pyrolysis oil-based drill cutting ash (OBDCA-sp) was modified using NaOH and cetyltrimethylammonium bromide (CTAB), respectively. The modified OBDCA-sp was used as the novel adsorbent for adsorption of tetracycline (TC) in aqueous solutions. The original and modified OBDCA-sp were characterized by SEM, XRD, FTIR, zeta potential analysis, contact angle, and BET. The maximum theoretical adsorption quantity (45 ℃) for TC was calculated as 1.7 mg/g using CTAB-OBDCA-sp as the adsorbent. The adsorption isotherm of TC on OBDCA-sp was fitted well with Freundlich model and the adsorption kinetic was illustrated by pseudo-second-order model. Neutral condition was favorable for the adsorption of TC. The result of regeneration experiment indicated the reusability of OBDCA-sp. The hydrogen bonding was the possible mechanism for TC adsorption. This paper developed the novel surface modification methods of OBDCA-sp and provided an approach for the resource utilization of OBDCA-sp as an environmental functional material.


Subject(s)
Pyrolysis , Water Pollutants, Chemical , Adsorption , Cetrimonium , Sodium Hydroxide , Tetracycline , Anti-Bacterial Agents , Kinetics , Hydrogen-Ion Concentration
3.
J Environ Sci (China) ; 118: 130-139, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35305761

ABSTRACT

Ecological restoration is one of the hot technologies for the reconstruction of eutrophic lake ecosystems in which the restoration and propagation of submerged plants is the key and difficult step. In this paper, the effect of vermiculite on the growth process of Vallisneria spiralis and sediment microenvironment were investigated, aiming to provide a theoretical basis for the application of vermiculite in aquatic ecological restoration. Results of growth indexes demonstrated that 5% and 10% vermiculite treatment groups statistically promote the growth of Vallisneria spiralis compared to the control. Meanwhile, the results of ecophysiological indexes showed that photosynthetic pigment, soluble sugar content, superoxide dismutase (SOD), and catalase (CAT) activity of 5% and 10% group were increased compared with the control while the malondialdehyde (MDA) content exhibited the opposite result (p < 0.05), which illustrated that vermiculite can improve the resistance of plants and delay the aging process of Vallisneria spiralis. In addition, result of PCA (Principal Component Analysis) demonstrated 5% and 10% group has improved the sediment physical conditions and create more ecological niche for microorganisms directly, and then promoted the growth of plants. The dissolution results showed that vermiculite can dissolve the constant and trace elements needed for plant growth. Furthermore, the addition of vermiculite increased the diversity of microorganisms in the sediments, and promoted the increase of plant growth-promoting bacteria and phosphorus-degrading bacteria. This study could provide a technique reference for the further application of vermiculite in the field of ecological restoration.


Subject(s)
Ecosystem , Hydrocharitaceae , Aluminum Silicates , Lakes
4.
Chemosphere ; 298: 134236, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35288180

ABSTRACT

The diffusive gradients in thin films (DGT) technique was applied to determine the mechanism by which bentonite improves the eutrophic lake sediment microenvironment and enhances submerged plant growth. The migration dynamics of N, P, S, and other nutrient elements were established for each sediment layer and the remediation effects of bentonite and submerged plants on sediments were evaluated. Submerged plant growth in the bentonite group was superior to that of the Control. At harvest time, the growth of Vallisneria spiralis and Hydrilla verticillata was optimal on a substrate consisting of five parts eutrophic lake sediment to one part modified bentonite (MB5/1). Bentonite addition to the sediment was conducive to rhizosphere microorganism proliferation. Microbial abundance was highest under the MB5/1 treatment whilst microbial diversity was highest under the RB1/1 (equal parts raw bentonite and eutrophic lake sediment) treatment. Bentonite addition to the sediment may facilitate the transformation of nutrients to bioavailable states. The TP content of the bentonite treatment was 22.47%-46.70% lower than that of the Control. Nevertheless, the bentonite treatment had higher bioavailable phosphorus (BIP) content than the control. The results of this study provide theoretical and empirical references for the use of a combination of modified bentonite and submerged plants to remediate eutrophic lake sediment microenvironments.


Subject(s)
Hydrocharitaceae , Water Pollutants, Chemical , Bentonite/chemistry , Geologic Sediments/chemistry , Lakes/chemistry , Phosphorus/chemistry , Water Pollutants, Chemical/analysis
6.
Environ Sci Pollut Res Int ; 29(17): 25939-25951, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34850346

ABSTRACT

Modified maifanite (MMF) was prepared by the synthesized method with sulfuric acid treatment and high-temperature calcination and evaluated as an effective adsorption material to remove the nutrient salt in waste watery. Compared with the raw maifanite (RMF), the MMF exhibited a higher adsorption capacity and higher removal efficiency. The results showed that the adsorption rates of total phosphorus (TP), total nitrogen (TN), ammonia nitrogen (NH3-N), nitrate-nitrogen (NOx-N), and chemical oxygen demand (COD) by MMF were 86.7%, 44.9%, 29.1%, 19.8%, and 11.9%, respectively, and compared to RMF, the average adsorption capacity of these nutrients by MMF increased by 20.5 mg/kg, 126.2 mg/kg, 61.9 mg/kg, 117.18 mg/kg, and 86.9 mg/kg, respectively. MMF maintained the basic structure and composition of maifanite, while having a rougher and looser surface, more irregular pores, wider gaps, and more active materials such as oxidizing Fe. This study suggests that MMF can be further applied to treat domestic sewage and eutrophic water.


Subject(s)
Phosphorus , Sewage , Adsorption , Nitrogen/analysis , Nutrients , Waste Disposal, Fluid/methods
7.
J Environ Manage ; 287: 112308, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-33706092

ABSTRACT

The effects of clay mineral bentonite on the growth process of submerged macrophyte V. spiralis and sediment microenvironment were investigated in the study for the first time, aiming to determine whether it is suitable for application in the field of ecological restoration. The growth index, and physiological and biochemical index of V. spiralis in the experiments were measured once a month, and the changes of rhizosphere microorganisms and physicochemical properties of sediments were also studied at the same time. The results demonstrated that bentonite can effectively promote the growth of V. spiralis. The treatment groups of RB1/1 and MB1/5 (the mass ratios of bentonite to sediment were 1/1 and 1/5, respectively.) showed the best V. spiralis growth promotion rates which were 18.78%, and 11.79%, respectively. The highest microbial diversity and abundance existed in group of RB10 (the mass ratio of sediment to bentonite was 10/1), in which the OTUs, Shannon, Chao and Ace were 1521.0, 5.20, 1712.26, and 1686.31, respectively. Bentonite was conducive to the propagation of rhizosphere microorganisms, and further changed the physical and chemical properties of the sediment microenvironment. The nutrient elements dissolved from bentonite may be one of the main reasons that promoted the growth of V. spiralis. The purpose of this result is to prove that bentonite can be further applied as sediment improver and growing media in ecological restoration projects in eutrophic shallow lakes.


Subject(s)
Bentonite , Geologic Sediments , Lakes , Minerals , Phosphorus , Rhizosphere
SELECTION OF CITATIONS
SEARCH DETAIL
...