Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Natl Sci Rev ; 11(2): nwad329, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38384740

ABSTRACT

As the cornerstone mission of the fourth phase of the Chinese Lunar Exploration Program, Chang'E-7 (CE-7) was officially approved, and implementation started in 2022, including a main probe and a communication relay satellite. The main probe, consisting of an orbiter, a lander, a rover and a mini-flying probe, is scheduled to be launched in 2026. The lander will land on Shackleton crater's illuminated rim near the lunar south pole, along with the rover and mini-flying probe. The relay satellite (named Queqiao-2) will be launched in February 2024 as an independent mission to support relay communication during scientific exploration undertaken by Chang'E-4, the upcoming Chang'E-6 in 2024 and subsequent lunar missions. The CE-7 mission is mainly aimed at scientific and resource exploration of the lunar south pole. We present CE-7's scientific objectives, the scientific payloads configuration and the main functions for each scientific payload with its key technical specifications.

2.
Nat Commun ; 14(1): 2892, 2023 May 20.
Article in English | MEDLINE | ID: mdl-37210379

ABSTRACT

One of the long-standing enigmas for lunar tectonic-thermal evolution is the spatiotemporal association of contractional wrinkle ridges and basaltic volcanism in a compressional regime. Here, we show that most of the 30 investigated volcanic (eruptive) centers are linked to contractional wrinkle ridges developed above preexisting basin basement-involved ring/rim normal faults. Based on the tectonic patterns associated with the basin formation and mass loading and considering that during the subsequent compression the stress was not purely isotropic, we hypothesize that tectonic inversion produced not only thrust faults but also reactivated structures with strike-slip and even extensional components, thus providing a valid mechanism for magma transport through fault planes during ridge faulting and folding of basaltic layers. Our findings suggest that lunar syn-tectonic mare emplacement along reactivated inherited faults provides important records of basin-scale structure-involved volcanism, which is more complex than previously considered.

3.
Natl Sci Rev ; 10(4): nwac293, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36960225

ABSTRACT

Electrostatic discharge experiments under simulated martian atmospheric conditions indicate that atmospheric CO2 has been sequestered into carbonate by the Mars dust activities during the Amazonia era.

4.
Proc Natl Acad Sci U S A ; 119(51): e2214395119, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36508675

ABSTRACT

Remote sensing data revealed that the presence of water (OH/H2O) on the Moon is latitude-dependent and probably time-of-day variation, suggesting a solar wind (SW)-originated water with a high degassing loss rate on the lunar surface. However, it is unknown whether or not the SW-derived water in lunar soil grains can be preserved beneath the surface. We report ion microprobe analyses of hydrogen abundances, and deuterium/hydrogen ratios of the lunar soil grains returned by the Chang'e-5 mission from a higher latitude than previous missions. Most of the grain rims (topmost ~100 nm) show high abundances of hydrogen (1,116 to 2,516 ppm) with extremely low δD values (-908 to -992‰), implying nearly exclusively a SW origin. The hydrogen-content depth distribution in the grain rims is phase-dependent, either bell-shaped for glass or monotonic decrease for mineral grains. This reveals the dynamic equilibrium between implantation and outgassing of SW-hydrogen in soil grains on the lunar surface. Heating experiments on a subset of the grains further demonstrate that the SW-implanted hydrogen could be preserved after burial. By comparing with the Apollo data, both observations and simulations provide constraints on the governing role of temperature (latitude) on hydrogen implantation/migration in lunar soils. We predict an even higher abundance of hydrogen in the grain rims in the lunar polar regions (average ~9,500 ppm), which corresponds to an estimation of the bulk water content of ~560 ppm in the polar soils assuming the same grain size distribution as Apollo soils, consistent with the orbit remote sensing result.


Subject(s)
Soil , Water , Moon , Wind , Hydrogen
5.
Sci Adv ; 8(19): eabn8555, 2022 05 13.
Article in English | MEDLINE | ID: mdl-35544566

ABSTRACT

The Mars' climate is cold and dry in the most recent epoch, and liquid water activities are considered extremely limited. Previous orbital data only show sporadic hydrous minerals in the northern lowlands of Mars excavated by large impacts. Using the short-wave infrared spectral data obtained by the Zhurong rover of China's Tianwen-1 mission, which landed in southern Utopia Planitia on Mars, we identify hydrated sulfate/silica materials on the Amazonian terrain at the landing site. These hydrated minerals are associated with bright-toned rocks, interpreted to be duricrust developed locally. The lithified duricrusts suggest that formation with substantial liquid water originates by either groundwater rising or subsurface ice melting. In situ evidence for aqueous activities identified at Zhurong's landing site indicates a more active Amazonian hydrosphere for Mars than previously thought.

6.
Sci Adv ; 8(1): eabl9174, 2022 Jan 07.
Article in English | MEDLINE | ID: mdl-34995111

ABSTRACT

We report analysis results of the reflectance spectra (0.48 to 3.2 µm) acquired by the Chang'E-5 lander, which provides vital context of the returned samples from the Northern Oceanus Procellarum of the Moon. We estimate up to 120 parts per million (ppm) of water (OH + H2O) in the lunar regolith, which is mostly attributed to solar wind implantation. A light-colored and surface-pitted rock (named as CE5-Rock) is evident near the lander. The reflectance spectra suggest that CE5-Rock could be transported from an older basalt unit. CE5-Rock exhibits a stronger absorption, near 2.85 µm, than the surrounding regolith, with estimation of ~180 ppm of water if the model for estimating water content of regolith is applicable to rock samples, which may suggest an additional source from the lunar interior. The low water content of the regolith may suggest the degassing of mantle reservoir beneath the Chang'E-5 landing site.

7.
Sci Adv ; 6(39)2020 Sep.
Article in English | MEDLINE | ID: mdl-32978156

ABSTRACT

Human exploration of the Moon is associated with substantial risks to astronauts from space radiation. On the surface of the Moon, this consists of the chronic exposure to galactic cosmic rays and sporadic solar particle events. The interaction of this radiation field with the lunar soil leads to a third component that consists of neutral particles, i.e., neutrons and gamma radiation. The Lunar Lander Neutrons and Dosimetry experiment aboard China's Chang'E 4 lander has made the first ever measurements of the radiation exposure to both charged and neutral particles on the lunar surface. We measured an average total absorbed dose rate in silicon of 13.2 ± 1 µGy/hour and a neutral particle dose rate of 3.1 ± 0.5 µGy/hour.

8.
Natl Sci Rev ; 7(5): 913-920, 2020 May.
Article in English | MEDLINE | ID: mdl-34692112

ABSTRACT

Chang'E-4 landed in the South Pole-Aitken (SPA) basin, providing a unique chance to probe the composition of the lunar interior. Its landing site is located on ejecta strips in Von Kármán crater that possibly originate from the neighboring Finsen crater. A surface rock and the lunar regolith at 10 sites along the rover Yutu-2 track were measured by the onboard Visible and Near-Infrared Imaging Spectrometer in the first three lunar days of mission operations. In situ spectra of the regolith have peak band positions at 1 and 2 µm, similar to the spectral data of Finsen ejecta from the Moon Mineralogy Mapper, which confirms that the regolith's composition of the landing area is mostly similar to that of Finsen ejecta. The rock spectrum shows similar band peak positions, but stronger absorptions, suggesting relatively fresh exposure. The rock may consist of 38.1 ± 5.4% low-Ca pyroxene, 13.9 ± 5.1% olivine and 48.0 ± 3.1% plagioclase, referred to as olivine-norite. The plagioclase-abundant and olivine-poor modal composition of the rock is inconsistent with the origin of the mantle, but representative of the lunar lower crust. Alternatively, the rock crystallized from the impact-derived melt pool formed by the SPA-impact event via mixing the lunar crust and mantle materials. This scenario is consistent with fast-cooling thermal conditions of a shallow melt pool, indicated by the fine to medium-sized texture (<3 mm) of the rock and the SPA-impact melting model [Icarus 2012; 220: 730-43].

9.
Sci Rep ; 6: 32362, 2016 08 31.
Article in English | MEDLINE | ID: mdl-27576944

ABSTRACT

The Moon-based Extreme Ultraviolet Camera (EUVC) of the Chang'e 3 mission provides a global and instantaneous meridian view (side view) of the Earth's plasmasphere. The plasmasphere is one inner component of the whole magnetosphere, and the configuration of the plasmasphere is sensitive to magnetospheric activity (storms and substorms). However, the response of the plasmaspheric configuration to substorms is only partially understood, and the EUVC observations provide a good opportunity to investigate this issue. By reconstructing the global plasmaspheric configuration based on the EUVC images observed during 20-22 April 2014, we show that in the observing period, the plasmasphere had three bulges which were located at different geomagnetic longitudes. The inferred midnight transit times of the three bulges, using the rotation rate of the Earth, coincide with the expansion phase of three substorms, which implies a causal relationship between the substorms and the formation of the three bulges on the plasmasphere. Instead of leading to plasmaspheric erosion as geomagnetic storms do, substorms initiated on the nightside of the Earth cause local inflation of the plasmasphere in the midnight region.

10.
Proc Natl Acad Sci U S A ; 112(17): 5342-7, 2015 Apr 28.
Article in English | MEDLINE | ID: mdl-25870265

ABSTRACT

We report the surface exploration by the lunar rover Yutu that landed on the young lava flow in the northeastern part of the Mare Imbrium, which is the largest basin on the nearside of the Moon and is filled with several basalt units estimated to date from 3.5 to 2.0 Ga. The onboard lunar penetrating radar conducted a 114-m-long profile, which measured a thickness of ∼5 m of the lunar regolith layer and detected three underlying basalt units at depths of 195, 215, and 345 m. The radar measurements suggest underestimation of the global lunar regolith thickness by other methods and reveal a vast volume of the last volcano eruption. The in situ spectral reflectance and elemental analysis of the lunar soil at the landing site suggest that the young basalt could be derived from an ilmenite-rich mantle reservoir and then assimilated by 10-20% of the last residual melt of the lunar magma ocean.

11.
Science ; 347(6227): 1226-9, 2015 Mar 13.
Article in English | MEDLINE | ID: mdl-25766228

ABSTRACT

China's Chang'E-3 (CE-3) spacecraft touched down on the northern Mare Imbrium of the lunar nearside (340.49°E, 44.12°N), a region not directly sampled before. We report preliminary results with data from the CE-3 lander descent camera and from the Yutu rover's camera and penetrating radar. After the landing at a young 450-meter crater rim, the Yutu rover drove 114 meters on the ejecta blanket and photographed the rough surface and the excavated boulders. The boulder contains a substantial amount of crystals, which are most likely plagioclase and/or other mafic silicate mineral aggregates similar to terrestrial dolerite. The Lunar Penetrating Radar detection and integrated geological interpretation have identified more than nine subsurface layers, suggesting that this region has experienced complex geological processes since the Imbrian and is compositionally distinct from the Apollo and Luna landing sites.

12.
Sci Rep ; 3: 3411, 2013 Dec 12.
Article in English | MEDLINE | ID: mdl-24336501

ABSTRACT

On 13 December 2012, Chang'e-2 conducted a successful flyby of the near-Earth asteroid 4179 Toutatis at a closest distance of 770 ± 120 meters from the asteroid's surface. The highest-resolution image, with a resolution of better than 3 meters, reveals new discoveries on the asteroid, e.g., a giant basin at the big end, a sharply perpendicular silhouette near the neck region, and direct evidence of boulders and regolith, which suggests that Toutatis may bear a rubble-pile structure. Toutatis' maximum physical length and width are (4.75 × 1.95 km) ±10%, respectively, and the direction of the +z axis is estimated to be (250 ± 5°, 63 ± 5°) with respect to the J2000 ecliptic coordinate system. The bifurcated configuration is indicative of a contact binary origin for Toutatis, which is composed of two lobes (head and body). Chang'e-2 observations have significantly improved our understanding of the characteristics, formation, and evolution of asteroids in general.

SELECTION OF CITATIONS
SEARCH DETAIL
...