Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 628(Pt A): 943-954, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-35964442

ABSTRACT

HYPOTHESIS: Understanding the microscopic driving force of water wetting is challenging and important for design of materials. The relations between structure, dynamics and hydrogen bonds of interfacial water can be investigated using molecular dynamics simulations. EXPERIMENTS AND SIMULATIONS: Contact angles at the alumina (0001) and (112‾0) surfaces are studied using both classical molecular dynamics simulations and experiments. To test the superhydrophilicity, the free energy cost of removing waters near the interfaces are calculated using the density fluctuations method. The strength of hydrogen bonds is determined by their lifetime and geometry. FINDINGS: Both surfaces are superhydrophilic and the (0001) surface is more hydrophilic. Interactions between surfaces and interfacial waters promote a templating effect whereby the latter are aligned in a pattern that follows the underlying lattice of the surfaces. Translational and rotational dynamics of interfacial water molecules are slower than in bulk water. Hydrogen bonds between water and both surfaces are asymmetric, water-to-aluminol ones are stronger than aluminol-to-water ones. Molecular dynamics simulations eliminate the impacts of surface contamination when measuring contact angles and the results reveal the microscopic origin of the macroscopic superhydrophilicity of alumina surfaces: strong water-to-aluminol hydrogen bonds.


Subject(s)
Aluminum Oxide , Molecular Dynamics Simulation , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Water/chemistry
2.
Food Chem ; 397: 133742, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-35940091

ABSTRACT

Water loss is a key factor for the postharvest senescence of fruit. It has been reported that natural cuticular wax at high concentrations has better performance than commercial coating in water retention of fruit, which can prevent postharvest water loss without the accumulation of off-flavor. Here, we analyzed the correlation between epicuticular wax and postharvest water loss with 75 citrus varieties from a natural population. The water loss rate of the fruit was little influenced by the wax microstructure (stomata and wax crystal morphology), but strongly affected by epicuticular wax components. Further, C24 and C26 aliphatic aldehydes showed the greatest impact on fruit water loss rate, whose correlation coefficients reached -0.63 and -0.67, respectively. These two substances could significantly reduce the fruit water loss rate, indicating that they are potential natural additives to be used in the coating for citrus fruit water retention.


Subject(s)
Citrus , Aldehydes/analysis , Fruit/chemistry , Water/analysis , Waxes/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...