Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 333
Filter
1.
Nat Prod Res ; : 1-9, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38767208

ABSTRACT

A new lignan phyllanins A (1) and a lignan phyllanins B (2) for which the absolute configuration was determined for the first time, along with four known lignans (3-6) were isolated from the branch and leaf extracts of Phyllanthodendron dunnianum. Their planar structures were mainly determined by a combination of 1D and 2D NMR, HRESIMS spectral analyses, and the absolute configurations of the compounds 1 and 2 were established by DFT GIAO 13C NMR and electronic circular dichroism (ECD) calculations. In addition, all these six lignans were firstly tested for the antibacterial activities against MRSA, Staphylococcus aureus, Enterococcus faecalis, Pseudomonas aeruginosa and Escherichia coli. Among these compounds, 2 and 5 showed potential antibacterial activities against MRSA and S. aureus with MIC values of 4 and 8 µg/mL, respectively.

2.
Appl Microbiol Biotechnol ; 108(1): 333, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38739270

ABSTRACT

Currently, there are many different therapies available for inflammatory bowel disease (IBD), including engineered live bacterial therapeutics. However, most of these studies focus on producing a single therapeutic drug using individual bacteria, which may cause inefficacy. The use of dual drugs can enhance therapeutic effects. However, expressing multiple therapeutic drugs in one bacterial chassis increases the burden on the bacterium and hinders good secretion and expression. Therefore, a dual-bacterial, dual-drug expression system allows for the introduction of two probiotic chassis and enhances both therapeutic and probiotic effects. In this study, we constructed a dual bacterial system to simultaneously neutralize pro-inflammatory factors and enhance the anti-inflammatory pathway. These bacteria for therapy consist of Escherichia coli Nissle 1917 that expressed and secreted anti-TNF-α nanobody and IL-10, respectively. The oral administration of genetically engineered bacteria led to a decrease in inflammatory cell infiltration in colon and a reduction in the levels of pro-inflammatory cytokines. Additionally, the administration of engineered bacteria did not markedly aggravate gut fibrosis and had a moderating effect on intestinal microbes. This system proposes a dual-engineered bacterial drug combination treatment therapy for inflammatory bowel disease, which provides a new approach to intervene and treat IBD. KEY POINTS: • The paper discusses the effects of using dual engineered bacteria on IBD • Prospects of engineered bacteria in the clinical treatment of IBD.


Subject(s)
Escherichia coli , Inflammatory Bowel Diseases , Interleukin-10 , Probiotics , Animals , Inflammatory Bowel Diseases/microbiology , Inflammatory Bowel Diseases/therapy , Inflammatory Bowel Diseases/drug therapy , Mice , Escherichia coli/genetics , Probiotics/administration & dosage , Interleukin-10/genetics , Tumor Necrosis Factor-alpha/metabolism , Disease Models, Animal , Genetic Engineering , Gastrointestinal Microbiome , Mice, Inbred C57BL , Colon/microbiology , Colon/pathology , Cytokines/metabolism , Anti-Inflammatory Agents/pharmacology
3.
J Hazard Mater ; 472: 134440, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38723480

ABSTRACT

N6-methyladenosine (m6A) is the most common form of internal post-transcriptional methylation observed in eukaryotic mRNAs. The abnormally increased level of m6A within the cells can be catalyzed by specific demethylase fat mass and obesity-associated protein (FTO) and stay in a dynamic and reversible state. However, whether and how FTO regulates oxidative damage via m6A modification remain largely unclear. Herein, by using both in vitro and in vivo models of oxidative damage induced by arsenic, we demonstrated for the first time that exposure to arsenic caused a significant increase in SUMOylation of FTO protein, and FTO SUMOylation at lysine (K)- 216 site promoted the down-regulation of FTO expression in arsenic target organ lung, and therefore, remarkably elevating the oxidative damage via an m6A-dependent pathway by its specific m6A reader insulin-like growth factor-2 mRNA-binding protein-3 (IGF2BP3). Consequently, these findings not only reveal a novel mechanism underlying FTO-mediated oxidative damage from the perspective of m6A, but also imply that regulation of FTO SUMOylation may serve as potential approach for treatment of oxidative damage.


Subject(s)
Adenosine , Alpha-Ketoglutarate-Dependent Dioxygenase FTO , Oxidative Stress , RNA-Binding Proteins , Sumoylation , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolism , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics , Sumoylation/drug effects , Animals , Oxidative Stress/drug effects , Adenosine/analogs & derivatives , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Humans , Arsenic/toxicity , Mice , Male , Lung/drug effects , Lung/metabolism
4.
Neurochem Int ; 176: 105725, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38561151

ABSTRACT

Epilepsy constitutes a global health concern, affecting millions of individuals and approximately one-third of patients exhibit drug resistance. Recent investigations have revealed alterations in cerebral iron content in both epilepsy patients and animal models. However, the extant literature lacks a comprehensive exploration into the ramifications of modulating iron homeostasis as an intervention in epilepsy. This study investigated the impact of deferasirox, a iron ion chelator, on epilepsy. This study unequivocally substantiated the antiepileptic efficacy of deferasirox in a kainic acid-induced epilepsy model. Furthermore, deferasirox administration mitigated seizure susceptibility in a pentylenetetrazol-induced kindling model. Conversely, the augmentation of iron levels through supplementation has emerged as a potential exacerbating factor in the precipitating onset of epilepsy. Intriguingly, our investigation revealed a hitherto unreported discovery: ITPRIP was identified as a pivotal modulator of excitatory synaptic transmission, regulating seizures in response to deferasirox treatment. In summary, our findings indicate that deferasirox exerts its antiepileptic effects through the precise targeting of ITPRIP and amelioration of cerebral iron homeostasis, suggesting that deferasirox is a promising and novel therapeutic avenue for interventions in epilepsy.


Subject(s)
Anticonvulsants , Brain , Deferasirox , Epilepsy , Homeostasis , Iron Chelating Agents , Iron , Deferasirox/pharmacology , Iron/metabolism , Animals , Homeostasis/drug effects , Homeostasis/physiology , Epilepsy/drug therapy , Epilepsy/metabolism , Anticonvulsants/pharmacology , Anticonvulsants/therapeutic use , Male , Brain/drug effects , Brain/metabolism , Iron Chelating Agents/pharmacology , Iron Chelating Agents/therapeutic use , Mice , Kindling, Neurologic/drug effects , Pentylenetetrazole/toxicity , Rats, Sprague-Dawley
5.
Biochem Biophys Res Commun ; 715: 150006, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38678786

ABSTRACT

Vascular endothelial cells play a critical role in maintaining the health of blood vessels, but dysfunction can lead to cardiovascular diseases. The impact of arsenite exposure on cardiovascular health is a significant concern due to its potential adverse effects. This study aims to explore how NBR1-mediated autophagy in vascular endothelial cells can protect against oxidative stress and apoptosis induced by arsenite. Initially, our observations revealed that arsenite exposure increased oxidative stress and triggered apoptotic cell death in human umbilical vein endothelial cells (HUVECs). However, treatment with the apoptosis inhibitor Z-VAD-FMK notably reduced arsenite-induced apoptosis. Additionally, arsenite activated the autophagy pathway and enhanced autophagic flux in HUVECs. Interestingly, inhibition of autophagy exacerbated arsenite-induced apoptotic cell death. Our findings also demonstrated the importance of autophagy receptor NBR1 in arsenite-induced cytotoxicity, as it facilitated the recruitment of caspase 8 to autophagosomes for degradation. The protective effect of NBR1 against arsenite-induced apoptosis was compromised when autophagy was inhibited using pharmacological inhibitors or through genetic knockdown of essential autophagy genes. Conversely, overexpression of NBR1 facilitated caspase 8 degradation and reduced apoptotic cell death in arsenite-treated HUVECs. In conclusion, our study highlights the vital role of NBR1-mediated autophagic degradation of caspase 8 in safeguarding vascular endothelial cells from arsenite-induced oxidative stress and apoptotic cell death. Targeting this pathway could offer a promising therapeutic approach to mitigate cardiovascular diseases associated with arsenite exposure.


Subject(s)
Apoptosis , Arsenites , Autophagy , Caspase 8 , Human Umbilical Vein Endothelial Cells , Oxidative Stress , Humans , Arsenites/toxicity , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Apoptosis/drug effects , Autophagy/drug effects , Caspase 8/metabolism , Caspase 8/genetics , Oxidative Stress/drug effects , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Proteolysis/drug effects , Cells, Cultured
6.
Angew Chem Int Ed Engl ; 63(23): e202401486, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38563640

ABSTRACT

Spatiotemporal regulation of clustered regularly interspaced short palindromic repeats (CRISPR) system is attractive for precise gene editing and accurate molecular diagnosis. Although many efforts have been made, versatile and efficient strategies to control CRISPR system are still desirable. Here, we proposed a universal and accessible acylation strategy to regulate the CRISPR-Cas12a system by efficient acylation of 2'-hydroxyls (2'-OH) on crRNA strand with photolabile agents (PLGs). The introduction of PLGs confers efficient suppression of crRNA function and rapid restoration of CRISPR-Cas12a reaction upon short light exposure regardless of crRNA sequences. Based on this strategy, we constructed a universal PhotO-Initiated CRISPR-Cas12a system for Robust One-pot Testing (POIROT) platform integrated with recombinase polymerase amplification (RPA), which showed two orders of magnitude more sensitive than the conventional one-step assay and comparable to the two-step assay. For clinical sample testing, POIROT achieved high-efficiency detection performance comparable to the gold-standard quantitative PCR (qPCR) in sensitivity and specificity, but faster than the qPCR method. Overall, we believe the proposed strategy will promote the development of many other universal photo-controlled CRISPR technologies for one-pot assay, and even expand applications in the fields of controllable CRISPR-based genomic editing, disease therapy, and cell imaging.


Subject(s)
CRISPR-Cas Systems , CRISPR-Cas Systems/genetics , Acylation , Humans , Photochemical Processes , Gene Editing/methods , Nucleic Acids/chemistry , Clustered Regularly Interspaced Short Palindromic Repeats/genetics
7.
Plant Sci ; 344: 112105, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38663481

ABSTRACT

As the most prominent proton pumps in plants, vacuolar H+-ATPases (VHAs) comprise multiple subunits that are important for physiological processes and stress tolerance in plants. However, few studies on the roles of subunit genes of VHAs in chrysanthemum have been reported to date. In this study, the gene of A subunit of V-ATPase in chrysanthemum (CmVHA-A) was cloned and identified. CmVHA-A was conserved with VHA-A proteins from other plants. Expression analysis showed that CmVHA-A was highly expressed in most tissues of chrysanthemum except for the flower bud, and was readily induced by polyethylene glycol (PEG) treatment. Functional analysis demonstrated that CmVHA-A exerted a negative influence on the growth and development of shoot and root of chrysanthemum under normal conditions. RNA-sequencing (RNA-seq) analysis revealed the possible explanations for phenotypic differences between transgenic and wild-type (WT) plants. Under drought conditions, CmVHA-A positively affected the drought tolerance of chrysanthemum by enhancing antioxidase activity and alleviating photosynthetic disruption. Overall, CmVHA-A plays opposite roles in plant growth and drought tolerance of chrysanthemums under different growing conditions.


Subject(s)
Chrysanthemum , Plant Proteins , Vacuolar Proton-Translocating ATPases , Chrysanthemum/genetics , Chrysanthemum/physiology , Chrysanthemum/growth & development , Chrysanthemum/enzymology , Vacuolar Proton-Translocating ATPases/genetics , Vacuolar Proton-Translocating ATPases/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Droughts , Gene Expression Regulation, Plant , Phylogeny , Plants, Genetically Modified/genetics , Stress, Physiological/genetics , Drought Resistance
8.
Angew Chem Int Ed Engl ; 63(20): e202402881, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38433093

ABSTRACT

Functionalized with the Au-S bond, gold nanoflares have emerged as promising candidates for theranostics. However, the presence of intracellular abundantly biothiols compromises the conventional Au-S bond, leading to the unintended release of cargoes and associated side-effects on non-target cells. Additionally, the hypoxic microenvironment in diseased regions limits treatment efficacy, especially in photodynamic therapy. To address these challenges, high-fidelity photodynamic nanoflares constructed on Pt-coated gold nanoparticles (Au@Pt PDNF) were communicated to avoid false-positive therapeutic signals and side-effects caused by biothiol perturbation. Compared with conventional photodynamic gold nanoflares (AuNP PDNF), the Au@Pt PDNF were selectively activated by cancer biomarkers and exhibited high-fidelity phototheranostics while reducing side-effects. Furthermore, the ultrathin Pt-shell catalysis was confirmed to generate oxygen which alleviated hypoxia-related photodynamic resistance and enhanced the antitumor effect. This design might open a new venue to advance theranostics performance and is adaptable to other theranostic nanomaterials by simply adding a Pt shell.


Subject(s)
Antineoplastic Agents , Gold , Metal Nanoparticles , Platinum , Theranostic Nanomedicine , Gold/chemistry , Humans , Platinum/chemistry , Metal Nanoparticles/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Photochemotherapy , Cell Survival/drug effects , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Cell Line, Tumor , Drug Screening Assays, Antitumor , Cell Proliferation/drug effects
9.
PLoS Genet ; 20(3): e1011196, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38466721

ABSTRACT

Hematophagous mosquitoes require vertebrate blood for their reproductive cycles, making them effective vectors for transmitting dangerous human diseases. Thus, high-intensity metabolism is needed to support reproductive events of female mosquitoes. However, the regulatory mechanism linking metabolism and reproduction in mosquitoes remains largely unclear. In this study, we found that the expression of estrogen-related receptor (ERR), a nuclear receptor, is activated by the direct binding of 20-hydroxyecdysone (20E) and ecdysone receptor (EcR) to the ecdysone response element (EcRE) in the ERR promoter region during the gonadotropic cycle of Aedes aegypti (named AaERR). RNA interference (RNAi) of AaERR in female mosquitoes led to delayed development of ovaries. mRNA abundance of genes encoding key enzymes involved in carbohydrate metabolism (CM)-glucose-6-phosphate isomerase (GPI) and pyruvate kinase (PYK)-was significantly decreased in AaERR knockdown mosquitoes, while the levels of metabolites, such as glycogen, glucose, and trehalose, were elevated. The expression of fatty acid synthase (FAS) was notably downregulated, and lipid accumulation was reduced in response to AaERR depletion. Dual luciferase reporter assays and electrophoretic mobility shift assays (EMSA) determined that AaERR directly activated the expression of metabolic genes, such as GPI, PYK, and FAS, by binding to the corresponding AaERR-responsive motif in the promoter region of these genes. Our results have revealed an important role of AaERR in the regulation of metabolism during mosquito reproduction and offer a novel target for mosquito control.


Subject(s)
Aedes , Receptors, Steroid , Animals , Female , Humans , Aedes/genetics , Aedes/metabolism , Ecdysone/metabolism , Mosquito Vectors/genetics , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Homeostasis/genetics , Insect Proteins/genetics , Insect Proteins/metabolism
10.
Nano Lett ; 24(12): 3647-3653, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38488282

ABSTRACT

With exceptional quantum confinement, 2D monolayer semiconductors support a strong excitonic effect, making them an ideal platform for exploring light-matter interactions and as building blocks for novel optoelectronic devices. Different from the well-known in-plane excitons in transition metal dichalcogenides (TMD), the out-of-plane excitons in indium selenide (InSe) usually show weak emission, which limits their applications as light sources. Here, by embedding InSe in an anisotropic gap plasmon nanocavity, we have realized plasmon-enhanced linearly polarized photoluminescence with an anisotropic ratio up to ∼140, corresponding to degree of polarization (DoP) of ∼98.6%. Such polarization selectivity, originating from the polarization-dependent plasmonic enhancement supported by the "nanowire-on-mirror" nanocavity, can be well tuned by the InSe thickness. Moreover, we have also realized an InSe-based light-emitting diode with polarized electroluminescence. Our research highlights the role of excitonic dipole orientation in designing nanophotonic devices and paves the way for developing InSe-based optoelectronic devices with polarization control.

11.
Microbiome ; 12(1): 56, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38494479

ABSTRACT

BACKGROUND: Accumulating clinical evidence suggests that lung microbiome is closely linked to the progression of pulmonary diseases; however, it is still controversial which specimen type is preferred for the evaluation of lung microbiome. METHODS AND RESULTS: To address this issue, we established a classical acute lung injury (ALI) mice model by intratracheal instillation of lipopolysaccharides (LPS). We found that the bacterial DNA obtained from the bronchoalveolar lavage fluid (BALF), intact lung tissue [Lung(i)], lung tissue after perfused [Lung(p)], and feces of one mouse were enough for 16S rRNA sequencing, except the BALF of mice treated with phosphate buffer saline (PBS), which might be due to the biomass of lung microbiome in the BALF were upregulated in the mice treated with LPS. Although the alpha diversity among the three specimens from lungs had minimal differences, Lung(p) had higher sample-to-sample variation compared with BALF and Lung(i). Consistently, PCoA analysis at phylum level indicated that BALF was similar to Lung(i), but not Lung(p), in the lungs of mice treated with LPS, suggesting that BALF and Lung(i) were suitable for the evaluation of lung microbiome in ALI. Importantly, Actinobacteria and Firmicutes were identified as the mostly changed phyla in the lungs and might be important factors involved in the gut-lung axis in ALI mice. Moreover, Actinobacteria and Proteobacteria might play indicative roles in the severity of lung injury. CONCLUSION: This study shows both Lung(i) and BALF are suitable for the evaluation of murine lung microbiome in ALI, and several bacterial phyla, such as Actinobacteria, may serve as potential biomarkers for the severity of ALI. Video Abstract.


Subject(s)
Acute Lung Injury , Microbiota , Animals , Mice , Bronchoalveolar Lavage Fluid/microbiology , Lipopolysaccharides , RNA, Ribosomal, 16S/genetics , Lung/microbiology , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Bacteria/genetics
12.
Huan Jing Ke Xue ; 45(2): 885-897, 2024 Feb 08.
Article in Chinese | MEDLINE | ID: mdl-38471927

ABSTRACT

Using coconut shell and boric acid as raw materials, a new boron-doped coconut shell mesoporous carbon material (B-CSC) was prepared using a simple one-step pyrolysis method for efficient adsorption and removal of tetracycline pollutants in water. The effects of pyrolysis temperature and boron-carbon mass ratio on the adsorption performance under key preparation conditions were systematically studied, and their microstructure and physicochemical properties were characterized using a specific surface area and pore size analyzer (BET), field emission scanning electron microscopy (SEM), X-ray photon spectroscopy (XPS), Raman spectrometer (Raman), and Zeta potentiometer (Zeta). The effects of initial pH, different metal cations, and different background water quality conditions on the adsorption effect were systematically investigated. Combined with material characterization and correlation analysis, the enhanced adsorption mechanism was discussed and analyzed in depth. The results showed that one-step pyrolysis could incorporate boron into the surface and crystal lattice of coconut shell charcoal, resulting in a larger specific surface area and pore volume, and the main forms of boron introduced were H3BO3, B2O3, B, and B4C. The adsorption capacity of B-CSC to tetracycline reached 297.65 mg·g-1, which was 8.9 times that of the original coconut shell mesoporous carbon (CSC). At the same time, the adsorption capacity of B-CSC for rhodamine B (RhB), bisphenol A(BPA), and methylene blue (MB), common pollutants in aquatic environments, was as high as 372.65, 255.24, and 147.82 mg·g-1, respectively. The adsorption process of B-CSC to tetracycline was dominated by physicochemical interaction, mainly involving liquid film diffusion, surface adsorption, mesoporous and microporous diffusion, and active site adsorption, and H3BO3 was the main adsorption site. The adsorption strengthening mechanism mainly reduced the chemical inertness of the carbon network and enhanced its π-π interaction and hydrogen bonding with tetracycline molecules.

13.
J Nat Prod ; 87(4): 743-752, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38359467

ABSTRACT

Nuclear magnetic resonance (NMR) chemical shift calculations are powerful tools for structure elucidation and have been extensively employed in both natural product and synthetic chemistry. However, density functional theory (DFT) NMR chemical shift calculations are usually time-consuming, while fast data-driven methods often lack reliability, making it challenging to apply them to computationally intensive tasks with a high requirement on quality. Herein, we have constructed a 54-layer-deep graph convolutional network for 13C NMR chemical shift calculations, which achieved high accuracy with low time-cost and performed competitively with DFT NMR chemical shift calculations on structure assignment benchmarks. Our model utilizes a semiempirical method, GFN2-xTB, and is compatible with a broad variety of organic systems, including those composed of hundreds of atoms or elements ranging from H to Rn. We used this model to resolve the controversial J/K ring junction problem of maitotoxin, which is the largest whole molecule assigned by NMR calculations to date. This model has been developed into user-friendly software, providing a useful tool for routine rapid structure validation and assignation as well as a new approach to elucidate the large structures that were previously unsuitable for NMR calculations.


Subject(s)
Density Functional Theory , Molecular Structure , Carbon-13 Magnetic Resonance Spectroscopy/methods , Oxocins/chemistry , Software
14.
Eur J Pharmacol ; 969: 176440, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38402930

ABSTRACT

This study investigated the effects of semaglutide (Sema) on the gut microbiota of obese mice induced with high-fat diet (HFD). Male C57BL/6 J mice aged 6 weeks were enrolled and randomly distributed to four groups, which were provided with a normal control diet (NCD,NCD + Sema) and a 60% proportion of a high-fat diet (HFD,HFD + Sema), respectively. HFD was given for 10 weeks to develop an obesity model and the intervention was lasted for 18 days. The results showed semaglutide significantly reduced body weight gain, areas under the curve (AUC) of glucose tolerance test and insulin resistance test, as well as adipose tissue weight in mice. Semaglutide effectively reduced lipid deposition and lipid droplet formation in the liver of obese mice, and regulated the expression of genes related to abnormal blood glucose regulation. Additionally, semaglutide influenced the composition of gut microbiota, mitigating the microbial dysbiosis induced by a high-fat diet by impacting the diversity of the gut microbiota. After the high-fat diet intervention, certain strains such as Akkermansia, Faecalibaculum, and Allobaculum were significantly decreased, while Lachnospiraceae and Bacteroides were significantly increased. However, the application of semaglutide restored the lost flora and suppressed excessive bacterial abundance. Moreover, semaglutide increased the content of tight junction proteins and repaired the damage to intestinal barrier function caused by the high-fat diet intervention. Furthermore, correlation analysis revealed inverse relationship among Akkermansia levels and weight gain, blood glucose levels, and various obesity indicators. Correlation analysis also showed that Akkermansia level was negatively correlated with weight gain, blood glucose levels and a range of obesity indicators. This phenomenon may explain the anti-obesity effect of semaglutide, which is linked to alterations in gut microbiota, specifically an increase in the abundance of Akkermansia. In summary, our findings indicate that semaglutide has the potential to alleviate gut microbiota dysbiosis, and the gut microbiota may contribute to the obesity-related effects of this drug.


Subject(s)
Gastrointestinal Microbiome , Glucagon-Like Peptides , Noncommunicable Diseases , Male , Mice , Animals , Diet, High-Fat/adverse effects , Blood Glucose/analysis , Dysbiosis/metabolism , Mice, Obese , Mice, Inbred C57BL , Obesity/drug therapy , Obesity/microbiology , Weight Gain
15.
Phytochemistry ; 220: 114011, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38367793

ABSTRACT

Chemical investigation of the culture extract of an endophyte Xylaria curta YSJ-5 from Alpinia zerumbet (Pers.) Burtt. et Smith resulted in the isolation of eight previously undescribed compounds including five eremophilane sesquiterpenes xylarcurenes A-E, one norsesquiterpene xylarcurene F, and two α-pyrone derivatives xylarpyrones A-B together with eight known related derivatives. Their chemical structures were extensively established based on the 1D- and 2D-NMR spectroscopic analysis, modified Mosher's method, electronic circular dichroism calculations, single-crystal X-ray diffraction experiments, and the comparison with previous literature data. All these compounds were tested for in vitro cytotoxic, anti-inflammatory, α-glucosidase inhibitory, and antibacterial activities. As a result, 6-pentyl-4-methoxy-pyran-2-one was disclosed to display significant antibacterial activity against Staphylococcus aureus and methicillin-resistant S. aureus with minimal inhibitory concentration value of 6.3 µg/mL.


Subject(s)
Ascomycota , Methicillin-Resistant Staphylococcus aureus , Sesquiterpenes , Pyrones/chemistry , Molecular Structure , Sesquiterpenes/chemistry , Anti-Bacterial Agents/chemistry
16.
Crit Care ; 28(1): 36, 2024 01 30.
Article in English | MEDLINE | ID: mdl-38291524

ABSTRACT

BACKGROUND: Sepsis is a severe condition characterized by acute organ dysfunction resulting from an imbalanced host immune response to infections. Apolipoprotein H (APOH) is a critical plasma protein that plays a crucial role in regulating various biological processes. However, the precise role of APOH in the immunopathology of paediatric sepsis remains unclear. METHODS: In this study, we evaluated the concentration of APOH in paediatric patients with sepsis and healthy individuals. In an experimental sepsis model of caecal ligation and puncture (CLP), the impact of APOH on survival, organ injury, and inflammation was measured. Furthermore, the anti-inflammatory effects of APOH were investigated across diverse immune cell types, encompassing peripheral blood mononuclear cells (PBMCs), peritoneal macrophages (PMs), bone marrow-derived macrophages (BMDMs), and RAW 264.7 macrophages. RESULTS: In the pilot cohort, the relative abundance of APOH was found to be decreased in patients with sepsis (2.94 ± 0.61) compared to healthy controls (1.13 ± 0.84) (p < 0.001), non-survivors had lower levels of APOH (0.50 ± 0.37) compared to survivors (1.45 ± 0.83) (p < 0.05). In the validation cohort, the serum concentration of APOH was significantly decreased in patients with sepsis (202.0 ± 22.5 ng/ml) compared to healthy controls (409.5 ± 182.9 ng/ml) (p < 0.0001). The application of recombinant APOH protein as a therapeutic intervention significantly lowered the mortality rate, mitigated organ injury, and suppressed inflammation in mice with severe sepsis. In contrast, neutralizing APOH with an anti-APOH monoclonal antibody increased the mortality rate, exacerbated organ injury, and intensified inflammation in mice with non-severe sepsis. Intriguingly, APOH exhibited minimal effects on the bacterial burden, neutrophil, and macrophage counts in the sepsis mouse model, along with negligible effects on bacterial phagocytosis and killing during Pseudomonas aeruginosa infection in PMs, RAW 264.7 cells, and PBMCs. Mechanistic investigations in PMs and RAW 264.7 cells revealed that APOH inhibited M1 polarization in macrophages by suppressing toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) signalling pathway. CONCLUSION: This proof-of-concept study demonstrated that APOH has a protective role in the host defense response to sepsis, highlighting the potential therapeutic value of APOH in sepsis treatment.


Subject(s)
Leukocytes, Mononuclear , Sepsis , Animals , Child , Humans , Mice , beta 2-Glycoprotein I , Inflammation , Leukocytes, Mononuclear/metabolism , Mice, Inbred C57BL , NF-kappa B/metabolism , NF-kappa B/pharmacology , NF-kappa B/therapeutic use , Phagocytosis , Apolipoproteins/metabolism
17.
BMC Biol ; 22(1): 7, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38233907

ABSTRACT

BACKGROUND: Mosquitoes transmit many infectious diseases that affect human health. The fungus Beauveria bassiana is a biological pesticide that is pathogenic to mosquitoes but harmless to the environment. RESULTS: We found a microRNA (miRNA) that can modulate the antifungal immunity of Aedes aegypti by inhibiting its cognate serine protease. Fungal infection can induce the expression of modular serine protease (ModSP), and ModSP knockdown mosquitoes were more sensitive to B. bassiana infection. The novel miRNA-novel-53 is linked to antifungal immune response and was greatly diminished in infected mosquitoes. The miRNA-novel-53 could bind to the coding sequences of ModSP and impede its expression. Double fluorescence in situ hybridization (FISH) showed that this inhibition occurred in the cytoplasm. The amount of miRNA-novel-53 increased after miRNA agomir injection. This resulted in a significant decrease in ModSP transcript and a significant increase in mortality after fungal infection. An opposite effect was produced after antagomir injection. The miRNA-novel-53 was also knocked out using CRISPR-Cas9, which increased mosquito resistance to the fungus B. bassiana. Moreover, mosquito novel-circ-930 can affect ModSP mRNA by interacting with miRNA-novel-53 during transfection with siRNA or overexpression plasmid. CONCLUSIONS: Novel-circ-930 affects the expression level of ModSP by a novel-circ-930/miRNA-novel-53/ModSP mechanism to modulate antifungal immunity, revealing new information on innate immunity in insects.


Subject(s)
Aedes , MicroRNAs , Mycoses , Animals , Humans , Aedes/genetics , Aedes/microbiology , MicroRNAs/genetics , RNA, Circular , Serine Proteases/genetics , Antifungal Agents , In Situ Hybridization, Fluorescence , Fungi/genetics , Serine Endopeptidases
18.
Nat Commun ; 15(1): 106, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38168045

ABSTRACT

Aedes aegypti are vectors for several arboviruses infecting hundreds of millions of people annually. Controlling mosquito populations by regulating their reproduction is a potential strategy to minimize viral transmission in the absence of effective antiviral therapies or vaccines. Here, we demonstrate that leucine aminopeptidase1 (LAP1), detected by a SWATH-MS-based proteomic screen of female spermathecae, is a crucial determinant in mosquito population expansion. Mitochondrial defects and aberrant autophagy of sperm in LAP1 mutant males (LAP1-/-), prepared using CRISPR/Cas9 system, result in a reduction of reproduction in wild-type females that mated with them. The fitness of LAP1-/- males is strong enough to efficiently transmit genetic changes to mosquito populations through a low number of hatchable offspring. Thus, LAP1-/- males represent an opportunity to suppress mosquito populations and further studies should be undertaken to characterize LAP1's suitability for gene drive usage.


Subject(s)
Aedes , Animals , Male , Humans , Female , Leucine , Proteomics , Mosquito Vectors , Semen
19.
Nat Prod Res ; : 1-11, 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37933750

ABSTRACT

One new cyclopeptide, cyclo-(L-Trp-L-Phe-L-Phe) (1), one new 2-pyridone derivative, fusarone A (3), and one new natural indole derivative, ethyl 3-indoleacetate (4), along with six known compounds were isolated from the endophytic fungus Fusarium proliferatum T2-10. The planar structures of three new compounds were identified by spectral methods including 1D and 2D NMR techniques, and the absolute configuration of compound 1 was elucidated by Marfey-MS method. In addition, all compounds were evaluated for their cytotoxic and antibacterial activities in vitro. Compound 2 showed remarkable cytotoxic activities against two human hepatoma cell lines SMMC7721 and HepG2 with IC50 values of 5.89 ± 0.74 and 6.16 ± 0.52 µM, and showed moderate antibacterial activities against Staphylococcus aureus and Enterococcus faecalis with MIC values of 7.81 and 15.62 µg/mL, respectively.

20.
ACS Synth Biol ; 12(11): 3414-3423, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37939253

ABSTRACT

The emergence of genetically engineered bacteria has provided a new means for the diagnosis and treatment of diseases. However, in vivo applications of these engineered bacteria are hindered by their inefficient accumulation in areas of inflammation. In this study, we constructed an engineered Escherichia coli (E. coli) for directional migration toward tetrathionate (a biomarker of gut inflammation), which is regulated by the TtrSR two-component system (TCS) from Shewanella baltica OS195 (S. baltica). Specifically, we removed endogenous cheZ to control the motility of E. coli. Moreover, we introduced the reductase gene cluster (ttrBCA) from Salmonella enterica serotype typhimurium (S. typhimurium), a major pathogen causing gut inflammation, into E. coli to metabolize tetrathionate. The resulting strain was tested for its motility along the gradients of tetrathionate; the engineered strain exhibits tropism to tetrathionate compared with the original strain. Furthermore, the engineered E. coli could only restore its smooth swimming ability when tetrathionate existed. With these modifications enabling tetrathionate-mediated chemotactic and metabolizing activity, this strategy with therapeutic elements will provide a great potential opportunity for target treatment of various diseases by swapping the corresponding genetic circuits.


Subject(s)
Escherichia coli , Oxidoreductases , Humans , Escherichia coli/genetics , Escherichia coli/metabolism , Oxidoreductases/genetics , Salmonella typhimurium/genetics , Inflammation
SELECTION OF CITATIONS
SEARCH DETAIL
...