Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters











Publication year range
1.
Nat Commun ; 13(1): 1387, 2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35297401

ABSTRACT

Tailored nanoscale quantum light sources, matching the specific needs of use cases, are crucial building blocks for photonic quantum technologies. Several different approaches to realize solid-state quantum emitters with high performance have been pursued and different concepts for energy tuning have been established. However, the properties of the emitted photons are always defined by the individual quantum emitter and can therefore not be controlled with full flexibility. Here we introduce an all-optical nonlinear method to tailor and control the single photon emission. We demonstrate a laser-controlled down-conversion process from an excited state of a semiconductor quantum three-level system. Based on this concept, we realize energy tuning and polarization control of the single photon emission with a control-laser field. Our results mark an important step towards tailored single photon emission from a photonic quantum system based on quantum optical principles.

2.
Sci Rep ; 5: 10313, 2015 May 22.
Article in English | MEDLINE | ID: mdl-26000910

ABSTRACT

The coherent state preparation and control of single quantum systems is an important prerequisite for the implementation of functional quantum devices. Prominent examples for such systems are semiconductor quantum dots, which exhibit a fine structure split single exciton state and a V-type three level structure, given by a common ground state and two distinguishable and separately excitable transitions. In this work we introduce a novel concept for the preparation of a robust inversion by the sequential excitation in a V-type system via distinguishable paths.

3.
Phys Rev Lett ; 96(3): 037402, 2006 Jan 27.
Article in English | MEDLINE | ID: mdl-16486766

ABSTRACT

We report on Ramsey fringes measured in a single InGaAs/GaAs quantum dot two-level system. We are able to control the transition energy of the system by Stark effect tuning. In combination with double pulse excitation this allows for a voltage controlled preparation of the phase and the occupancy of the two-level system. For long pulse delay times we observe extremely narrow fringes with spectral width below the homogeneous linewidth of the system. Implications on quantum information processing are discussed.

4.
Phys Rev Lett ; 92(16): 166104, 2004 Apr 23.
Article in English | MEDLINE | ID: mdl-15169246

ABSTRACT

A novel structure containing self-assembled, unstrained GaAs quantum dots is obtained by combining solid-source molecular beam epitaxy and atomic-layer precise in situ etching. Photo-luminescence (PL) spectroscopy reveals light emission with very narrow inhomogeneous broadening and clearly resolved excited states at high excitation intensity. The dot morphology is determined by scanning probe microscopy and, combined with single band and eight-band k.p theory calculations, is used to interpret PL and single-dot spectra with no adjustable structural parameter.

5.
Nature ; 418(6898): 612-4, 2002 Aug 08.
Article in English | MEDLINE | ID: mdl-12167853

ABSTRACT

Present-day information technology is based mainly on incoherent processes in conventional semiconductor devices. To realize concepts for future quantum information technologies, which are based on coherent phenomena, a new type of 'hardware' is required. Semiconductor quantum dots are promising candidates for the basic device units for quantum information processing. One approach is to exploit optical excitations (excitons) in quantum dots. It has already been demonstrated that coherent manipulation between two excitonic energy levels--via so-called Rabi oscillations--can be achieved in single quantum dots by applying electromagnetic fields. Here we make use of this effect by placing an InGaAs quantum dot in a photodiode, which essentially connects it to an electric circuit. We demonstrate that coherent optical excitations in the quantum-dot two-level system can be converted into deterministic photocurrents. For optical excitation with so-called pi-pulses, which completely invert the two-level system, the current is given by I = fe, where f is the repetition frequency of the experiment and e is the elementary charge. We find that this device can function as an optically triggered single-electron turnstile.

6.
9.
Phys Rev Lett ; 73(2): 304-307, 1994 Jul 11.
Article in English | MEDLINE | ID: mdl-10057136
14.
Phys Rev B Condens Matter ; 41(12): 8477-8484, 1990 Apr 15.
Article in English | MEDLINE | ID: mdl-9993173
SELECTION OF CITATIONS
SEARCH DETAIL