Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Med Chem ; 271: 116401, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38640870

ABSTRACT

Methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococci (VRE) cause more than 100,000 deaths each year, which need efficient and non-resistant antibacterial agents. SAR analysis of 162 flavonoids from the plant in this paper suggested that lipophilic group at C-3 was crucial, and then 63 novel flavonoid derivatives were designed and total synthesized. Among them, the most promising K15 displayed potent bactericidal activity against clinically isolated MRSA and VRE (MICs = 0.25-1.00 µg/mL) with low toxicity and high membrane selectivity. Moreover, mechanism insights revealed that K15 avoided resistance by disrupting biofilm and targeting the membrane, while vancomycin caused 256 times resistance against MRSA, and ampicillin caused 16 times resistance against VRE by the same 20 generations inducing. K15 eliminated residual bacteria in mice skin MRSA-infected model (>99 %) and abdominal VRE-infected model (>92 %), which was superior to vancomycin and ampicillin.


Subject(s)
Anti-Bacterial Agents , Flavonoids , Methicillin-Resistant Staphylococcus aureus , Microbial Sensitivity Tests , Vancomycin-Resistant Enterococci , Methicillin-Resistant Staphylococcus aureus/drug effects , Flavonoids/pharmacology , Flavonoids/chemistry , Flavonoids/chemical synthesis , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Vancomycin-Resistant Enterococci/drug effects , Animals , Mice , Structure-Activity Relationship , Molecular Structure , Dose-Response Relationship, Drug , Staphylococcal Infections/drug therapy , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...