Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Biomedicines ; 12(5)2024 May 16.
Article in English | MEDLINE | ID: mdl-38791067

ABSTRACT

Reverse transcription followed by quantitative polymerase chain reaction (RT-qPCR) is a commonly used tool for gene expression analysis. The selection of stably expressed reference genes is required for accurate normalization. The aim of this study was to identify the optimal reference genes for RT-qPCR normalization in various brain regions of rats at different stages of the lithium-pilocarpine model of acquired epilepsy. We tested the expression stability of nine housekeeping genes commonly used as reference genes in brain research: Actb, Gapdh, B2m, Rpl13a, Sdha, Ppia, Hprt1, Pgk1, and Ywhaz. Based on four standard algorithms (geNorm, NormFinder, BestKeeper, and comparative delta-Ct), we found that after pilocarpine-induced status epilepticus, the stability of the tested reference genes varied significantly between brain regions and depended on time after epileptogenesis induction (3 and 7 days in the latent phase, and 2 months in the chronic phase of the model). Pgk1 and Ywhaz were the most stable, while Actb, Sdha, and B2m demonstrated the lowest stability in the analyzed brain areas. We revealed time- and region-specific changes in the mRNA expression of the housekeeping genes B2m, Actb, Sdha, Rpl13a, Gapdh, Hprt1, and Sdha. These changes were more pronounced in the hippocampal region during the latent phase of the model and are thought to be related to epileptogenesis. Thus, RT-qPCR analysis of mRNA expression in acquired epilepsy models requires careful selection of reference genes depending on the brain region and time of analysis. For the time course study of epileptogenesis in the rat lithium-pilocarpine model, we recommend the use of the Pgk1 and Ywhaz genes.

2.
Int J Mol Sci ; 24(20)2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37895080

ABSTRACT

Temporal lobe epilepsy is a common, chronic disorder with spontaneous seizures that is often refractory to drug therapy. A potential cause of temporal lobe epilepsy is primary brain injury, making prevention of epileptogenesis after the initial event an optimal method of treatment. Despite this, no preventive therapy for epilepsy is currently available. The purpose of this study was to evaluate the effects of anakinra, lamotrigine, and their combination on epileptogenesis using the rat lithium-pilocarpine model of temporal lobe epilepsy. The study showed that there was no significant difference in the number and duration of seizures between treated and untreated animals. However, the severity of seizures was significantly reduced after treatment. Anakinra and lamotrigine, alone or in combination, significantly reduced neuronal loss in the CA1 hippocampus compared to the control group. However, the drugs administered alone were found to be more effective in preventing neuron loss in the hippocampal CA3 field compared to combination treatment. The treatment alleviated the impairments in activity level, exploratory behavior, and anxiety but had a relatively weak effect on TLE-induced impairments in social behavior and memory. The efficacy of the combination treatment did not differ from that of anakinra and lamotrigine monotherapy. These findings suggest that anakinra and lamotrigine, either alone or in combination, may be clinically useful in preventing the development of histopathological and behavioral abnormalities associated with epilepsy.


Subject(s)
Epilepsy, Temporal Lobe , Rats , Animals , Epilepsy, Temporal Lobe/chemically induced , Epilepsy, Temporal Lobe/drug therapy , Epilepsy, Temporal Lobe/pathology , Pilocarpine/adverse effects , Lamotrigine/adverse effects , Lithium/adverse effects , Interleukin 1 Receptor Antagonist Protein/pharmacology , Anticonvulsants/adverse effects , Seizures/drug therapy , Hippocampus , Disease Models, Animal
3.
Int J Mol Sci ; 24(9)2023 May 08.
Article in English | MEDLINE | ID: mdl-37176158

ABSTRACT

Epilepsy is a challenging brain disorder that is often difficult to treat with conventional therapies. The gut microbiota has been shown to play an important role in the development of neuropsychiatric disorders, including epilepsy. In this study, the effects of Bifidobacterium longum, a probiotic, on inflammation, neuronal degeneration, and behavior are evaluated in a lithium-pilocarpine model of temporal lobe epilepsy (TLE) induced in young adult rats. B. longum was administered orally at a dose of 109 CFU/rat for 30 days after pilocarpine injection. The results show that B. longum treatment has beneficial effects on the TLE-induced changes in anxiety levels, neuronal death in the amygdala, and body weight recovery. In addition, B. longum increased the expression of anti-inflammatory and neuroprotective genes, such as Il1rn and Pparg. However, the probiotic had little effect on TLE-induced astrogliosis and microgliosis and did not reduce neuronal death in the hippocampus and temporal cortex. The study suggests that B. longum may have a beneficial effect on TLE and may provide valuable insights into the role of gut bacteria in epileptogenesis. In addition, the results show that B. longum may be a promising drug for the comprehensive treatment of epilepsy.


Subject(s)
Bifidobacterium longum , Epilepsy, Temporal Lobe , Epilepsy , Probiotics , Rats , Animals , Epilepsy, Temporal Lobe/chemically induced , Epilepsy, Temporal Lobe/drug therapy , Epilepsy, Temporal Lobe/metabolism , Pilocarpine/adverse effects , Lithium/pharmacology , Hippocampus/metabolism , Epilepsy/metabolism , Probiotics/pharmacology , Disease Models, Animal
4.
Int J Mol Sci ; 23(5)2022 Mar 02.
Article in English | MEDLINE | ID: mdl-35269897

ABSTRACT

Preventing epileptogenesis in people at risk is an unmet medical need. Metabotropic glutamate receptors (mGluRs) are promising targets for such therapy. However, drugs acting on mGluRs are not used in the clinic due to limited knowledge of the involvement of mGluRs in epileptogenesis. This study aimed to analyze the changes in gene expression of mGluR subtypes (1-5, 7, 8) in various rat brain regions in the latent and chronic phases of a lithium-pilocarpine model of epilepsy. For this study, multiplex test systems were selected and optimized to analyze mGluR gene expression using RT-qPCR. Region- and phase-specific changes in expression were revealed. During the latent phase, mGluR5 mRNA levels were increased in the dorsal and ventral hippocampus, and expression of group III genes was decreased in the hippocampus and temporal cortex, which could contribute to epileptogenesis. Most of the changes in expression detected in the latent stage were absent in the chronic stage, but mGluR8 mRNA production remained reduced in the hippocampus. Moreover, we found that gene expression of group II mGluRs was altered only in the chronic phase. The study deepened our understanding of the mechanisms of epileptogenesis and suggested that agonists of group III mGluRs are the most promising targets for preventing epilepsy.


Subject(s)
Epilepsy, Temporal Lobe , Epilepsy , Animals , Brain/metabolism , Epilepsy/metabolism , Epilepsy, Temporal Lobe/chemically induced , Epilepsy, Temporal Lobe/genetics , Epilepsy, Temporal Lobe/metabolism , Gene Expression , Hippocampus/metabolism , Humans , Lithium/pharmacology , Pilocarpine , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats
5.
Int J Mol Sci ; 22(15)2021 Jul 30.
Article in English | MEDLINE | ID: mdl-34360983

ABSTRACT

Febrile seizures (FSs) in early life are significant risk factors of neurological disorders and cognitive impairment in later life. However, existing data about the impact of FSs on the developing brain are conflicting. We aimed to investigate morphological and functional changes in the hippocampus of young rats exposed to hyperthermia-induced seizures at postnatal day 10. We found that FSs led to a slight morphological disturbance. The cell numbers decreased by 10% in the CA1 and hilus but did not reduce in the CA3 or dentate gyrus areas. In contrast, functional impairments were robust. Long-term potentiation (LTP) in CA3-CA1 synapses was strongly reduced, which we attribute to the insufficient activity of N-methyl-D-aspartate receptors (NMDARs). Using whole-cell recordings, we found higher desensitization of NMDAR currents in the FS group. Since the desensitization of NMDARs depends on subunit composition, we analyzed NMDAR current decays and gene expression of subunits, which revealed no differences between control and FS rats. We suggest that an increased desensitization is due to insufficient activation of the glycine site of NMDARs, as the application of D-serine, the glycine site agonist, allows the restoration of LTP to a control value. Our results reveal a new molecular mechanism of FS impact on the developing brain.


Subject(s)
Hippocampus/physiopathology , Long-Term Potentiation , Animals , Hippocampus/growth & development , Hippocampus/metabolism , Rats , Rats, Wistar , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Receptors, N-Methyl-D-Aspartate/metabolism , Seizures, Febrile/metabolism , Seizures, Febrile/physiopathology , Synaptic Potentials
6.
Int J Mol Sci ; 22(16)2021 Aug 05.
Article in English | MEDLINE | ID: mdl-34445137

ABSTRACT

Disrupted glutamate clearance in the synaptic cleft leads to synaptic dysfunction and neurological diseases. Decreased glutamate removal from the synaptic cleft is known to cause excitotoxicity. Data on the physiological effects of increased glutamate clearance are contradictory. This study investigated the consequences of ceftriaxone (CTX), an enhancer of glutamate transporter 1 expression, treatment on long-term synaptic potentiation (LTP) in the hippocampus of young rats. In this study, 5-day administration of CTX (200 mg/kg) significantly weakened LTP in CA3-CA1 synapses. As shown by electrophysiological recordings, LTP attenuation was associated with weakening of N-Methyl-D-aspartate receptor (NMDAR)-dependent signaling in synapses. However, PCR analysis did not show downregulation of NMDAR subunits or changes in the expression of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) subunits. We assume that extracellular burst stimulation activates fewer synapses in CTX-treated animals because increased glutamate reuptake results in reduced spillover, and neighboring synapses do not participate in neurotransmission. Attenuation of LTP was not accompanied by noticeable behavioral changes in the CTX group, with no behavioral abnormalities observed in the open field test or Morris water maze test. Thus, our experiments show that increased glutamate clearance can impair long-term synaptic plasticity and that this phenomenon can be considered a potential side effect of CTX treatment.


Subject(s)
Ceftriaxone/pharmacology , Hippocampus/drug effects , Long-Term Potentiation/drug effects , Animals , Excitatory Postsynaptic Potentials/drug effects , Glutamic Acid/metabolism , Hippocampus/metabolism , Male , Neuronal Plasticity/drug effects , Rats , Rats, Wistar , Receptors, AMPA/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Synapses/drug effects , Synapses/metabolism , Synaptic Transmission/drug effects , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/metabolism
7.
Biochemistry (Mosc) ; 86(6): 761-772, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34225597

ABSTRACT

According to the two-hit hypothesis of psychoneuropathology formation, infectious diseases and other pathological conditions occurring during the critical periods of early ontogenesis disrupt normal brain development and increase its susceptibility to stress experienced in adolescence and adulthood. It is believed that these disorders are associated with changes in the functional activity of the glutamatergic system in the hippocampus. Here, we studied expression of NMDA (GluN1, GluN2a, GluN2b) and AMPA (GluA1, GluA2) glutamate receptor subunits, as well as glutamate transporter EAAT2, in the ventral and dorsal regions of the hippocampus of rats injected with LPS during the third postnatal week and then subjected to predator stress (contact with a python) in adulthood. The tests were performed 25 days after the stress. It was found that stress altered protein expression in the ventral, but not in the dorsal hippocampus. Non-stressed LPS-treated rats displayed lower levels of the GluN2b protein in the ventral hippocampus vs. control animals. Stress significantly increased the content of GluN2b in the LPS-treated rats, but not in the control animals. Stress also affected differently the exploratory behavior of LPS-injected and control rats. Compared to the non-stressed animals, stressed control rats demonstrated a higher locomotor activity during the 1st min of the open field test, while the stressed LPS-injected rats displayed lower locomotor activity than the non-stressed rats. In addition, LPS-treated stressed and non-stressed rats spent more time in the open arms of the elevated plus maze and demonstrated reduced blood levels of corticosterone. To summarize the results of our study, exposure to bacterial LPS in the early postnatal ontogenesis affects the pattern of stress-induced changes in the behavior and hippocampal expression of genes coding for ionotropic glutamate receptor subunits after psychogenic trauma suffered in adulthood.


Subject(s)
Behavior, Animal , Hippocampus/metabolism , Lipopolysaccharides/toxicity , Receptors, Ionotropic Glutamate/genetics , Stress, Psychological/metabolism , Animals , Animals, Newborn , Gene Expression Regulation , Hippocampus/growth & development , Male , Rats , Rats, Wistar , Stress, Psychological/genetics
8.
Neuroscience ; 468: 1-15, 2021 08 01.
Article in English | MEDLINE | ID: mdl-34102267

ABSTRACT

Acute seizures can severely affect brain function and development. However, the underlying pathophysiological mechanisms are still poorly understood. Disturbances of the glutamatergic system are considered one of the critical mechanisms of neurological abnormalities. In the present study, we analyzed changes in the expression of NMDA and AMPA receptor subunits in the different brain regions (dorsal hippocampus, amygdala, and the medial prefrontal, temporal, and entorhinal cortex) using a pentylenetetrazole (PTZ) model of seizures in 3-week-old rats. A distinctive feature of this model is that the administration of PTZ causes severe acute seizures, which are not followed by the development of spontaneous recurrent seizures later on. Subunit expression was analyzed using qRT-PCR and Western blotting during the first week after seizures. The most pronounced alterations of mRNA and protein levels were observed in the dorsal hippocampus. We found decreased expression of the GluA2 mRNA 7 days after seizures (PSE7), as well as reduced GluN2a protein levels on PSE7. Significant alterations in the expression of different receptor subunits in the mRNA but not protein levels were observed in the entorhinal cortex and amygdala. In contrast, in the medial prefrontal and temporal cortex, we found almost no changes in the expression of the studied genes. The identified changes deepen our understanding of post-seizure disturbances in the developing brain and confirm that although various brain structures are involved in seizures, the hippocampus is the most vulnerable.


Subject(s)
Pentylenetetrazole , Seizures , Animals , Hippocampus/metabolism , Pentylenetetrazole/toxicity , RNA, Messenger , Rats , Receptors, AMPA/genetics , Receptors, AMPA/metabolism , Receptors, Glutamate/metabolism , Seizures/chemically induced
9.
Pharmaceuticals (Basel) ; 13(11)2020 Oct 25.
Article in English | MEDLINE | ID: mdl-33113868

ABSTRACT

Temporal lobe epilepsy is a widespread chronic disorder that manifests as spontaneous seizures and is often characterized by refractoriness to drug treatment. Temporal lobe epilepsy can be caused by a primary brain injury; therefore, the prevention of epileptogenesis after a primary event is considered one of the best treatment options. However, a preventive treatment for epilepsy still does not exist. Neuroinflammation is directly involved in epileptogenesis and neurodegeneration, leading to the epileptic condition and cognitive decline. In the present study, we aimed to clarify the effect of treatment with a recombinant form of the Interleukin-1 receptor antagonist (anakinra) on epileptogenesis and behavioral impairments in rats using the lithium-pilocarpine model. We found that anakinra administration during the latent phase of the model significantly suppressed the duration and frequency of spontaneous recurrent seizures in the chronic phase. Moreover, anakinra administration prevented some behavioral impairments, including motor hyperactivity and disturbances in social interactions, during both the latent and chronic periods. Histological analysis revealed that anakinra administration decreased neuronal loss in the CA1 and CA3 areas of the hippocampus but did not prevent astro- and microgliosis. The treatment increased the expression level of the solute carrier family 1 member 2 gene (Slc1a2, encoding excitatory amino acid transporter 2 (EAAT2)) in the hippocampus, potentially leading to a neuroprotective effect. However, the increased gene expression of proinflammatory cytokine genes (Interleukin-1ß (Il1b) and tumor necrosis factor α (Tnfa)) and astroglial marker genes (glial fibrillary acidic protein (Gfap) and inositol 1,4,5-trisphosphate receptor type 2 (Itpr2)) in experimental rats was not affected by anakinra treatment. Thus, our data demonstrate that the administration of anakinra during epileptogenesis has some beneficial disease-modifying effects.

10.
Brain Behav Immun ; 90: 3-15, 2020 11.
Article in English | MEDLINE | ID: mdl-32726683

ABSTRACT

Infections in childhood play an essential role in the pathogenesis of cognitive and psycho-emotional disorders. One of the possible mechanisms of these impairments is changes in the functional properties of NMDA and AMPA glutamate receptors in the brain. We suggest that bacterial infections during the early life period, which is critical for excitatory synapse maturation, can affect the subunit composition of NMDA and AMPA receptors. In the present study, we investigated the effect of repetitive lipopolysaccharide (LPS) intraperitoneal (i.p.) administration (25 µg/kg/day on P14, 16, and 18), mimicking an infectious disease, on the expression of subunits of NMDA and AMPA receptors in young rats. We revealed a substantial decrease of GluN2B subunit expression in the hippocampus at P23 using Western blot analysis and real-time polymerase chain reaction assay. Moderate changes were also found in GluN1, GluN2A, and GluA1 mRNA expression. The LPS-treated rats exhibited decreased exploratory and locomotor activity in the open field test and the impairment of spatial learning in the Morris water maze. Behavioral impairments were accompanied by a significant reduction in long-term hippocampal synaptic potentiation. Our data indicate that LPS-treatment in the critical period for excitatory synapse maturation alters ionotropic glutamate receptor gene expression, disturbs synaptic plasticity, and alters behavior.


Subject(s)
Long-Term Potentiation , Receptors, Ionotropic Glutamate , Animals , Cognition , Hippocampus/metabolism , Rats , Receptors, AMPA/genetics , Receptors, AMPA/metabolism , Receptors, N-Methyl-D-Aspartate/genetics , Receptors, N-Methyl-D-Aspartate/metabolism
11.
Biomedicines ; 8(8)2020 Jul 23.
Article in English | MEDLINE | ID: mdl-32717922

ABSTRACT

Reverse transcription followed by quantitative polymerase chain reaction (qRT-PCR) is a powerful and commonly used tool for gene expression analysis. It requires the right choice of stably expressed reference genes for accurate normalization. In this work, we aimed to select the optimal reference genes for qRT-PCR normalization within different brain areas during the first week following pentylenetetrazole-induced seizures in immature (P20-22) Wistar rats. We have tested the expression stability of a panel of nine housekeeping genes: Actb, Gapdh, B2m, Rpl13a, Sdha, Ppia, Hprt1, Pgk1, and Ywhaz. Based on geometric averaging of ranks obtained by four common algorithms (geNorm, NormFinder, BestKeeper, Comparative Delta-Ct), we found that the stability of tested reference genes varied significantly between different brain regions. The expression of the tested panel of genes was very stable within the medial prefrontal and temporal cortex, and the dorsal hippocampus. However, within the ventral hippocampus, the entorhinal cortex and amygdala expression levels of most of the tested genes were not steady. The data revealed that in the pentylenetetrazole-induced seizure model in juvenile rats, Pgk1, Ppia, and B2m expression are the most stable within the medial prefrontal cortex; Ppia, Rpl13a, and Sdha within the temporal cortex; Pgk1, Ppia, and Rpl13a within the entorhinal cortex; Gapdh, Ppia, and Pgk1 within the dorsal hippocampus; Rpl13a, Sdha, and Ppia within the ventral hippocampus; and Sdha, Pgk1, and Ppia within the amygdala. Our data indicate the need for a differential selection of reference genes across brain regions, including the dorsal and ventral hippocampus.

12.
Pharmaceuticals (Basel) ; 13(3)2020 Mar 18.
Article in English | MEDLINE | ID: mdl-32197321

ABSTRACT

Infectious diseases in early postnatal ontogenesis often result in cognitive impairments, particularly learning and memory. The essential foundation of learning and memory is long-term synaptic plasticity, which depends on N-methyl-D-aspartate (NMDA) receptors. In the present study, bacterial infection was modeled by treating rat pups with bacterial lipopolysaccharide (LPS, 25 µg/kg) three times, during either the first or the third week of life. These time points are critical for the maturation of NMDA receptors. We assessed the effects of LPS treatments on the properties of long-term potentiation (LTP) in the CA1 hippocampus of young (21-23 days) and adolescent (51-55 days) rats. LTP magnitude was found to be significantly reduced in both groups of young rats, which also exhibited investigative and motor behavior disturbances in the open field test. No changes were observed in the main characteristics of synaptic transmission, although the LTP induction mechanism was disturbed. In rats treated with LPS during the third week, the NMDA-dependent form of LTP was completely suppressed, and LTP switched to the Type 1 metabotropic glutamate receptor (mGluR1)-dependent form. These impairments of synaptic plasticity and behavior were temporary. In adolescent rats, no difference was observed in LTP properties between the control and experimental groups. Lastly, the investigative and motor behavior parameters in both groups of adult rats were similar.

13.
Int J Mol Sci ; 20(23)2019 Nov 21.
Article in English | MEDLINE | ID: mdl-31766528

ABSTRACT

Epilepsy is a common neurological disorder. Despite the availability of a wide range of antiepileptic drugs, these are unsuccessful in preventing seizures in 20-30% of patients. Therefore, new pharmacological strategies are urgently required to control seizures. Modulation of glutamate uptake may have potential in the treatment of pharmacoresistant forms of epilepsy. Previous research showed that the antibiotic ceftriaxone (CTX) increased the expression and functional activity of excitatory amino acid transporter 2 (EAAT2) and exerted considerable anticonvulsant effects. However, other studies did not confirm a significant anticonvulsant effect of CTX administration. We investigated the impacts of CTX treatment on EAAT expression and glutamatergic neurotransmission, as well its anticonvulsant action, in young male Wistar rats. As shown by a quantitative real-time polymerase chain reaction (qPCR) assay and a Western blot analysis, the mRNA but not the protein level of EAAT2 increased in the hippocampus following CTX treatment. Repetitive CTX administration had only a mild anticonvulsant effect on pentylenetetrazol (PTZ)-induced convulsions in a maximal electroshock threshold test (MEST). CTX treatment did not affect the glutamatergic neurotransmission, including synaptic efficacy, short-term facilitation, or the summation of excitatory postsynaptic potentials (EPSPs) in the hippocampus and temporal cortex. However, it decreased the field EPSP (fEPSP) amplitudes evoked by intense electrical stimulation. In conclusion, in young rats, CTX treatment did not induce overexpression of EAAT2, therefore exerting only a weak antiseizure effect. Our data provide new insight into the effects of modulation of EAAT2 expression on brain functioning.


Subject(s)
Ceftriaxone/pharmacology , Excitatory Amino Acid Transporter 2/genetics , Gene Expression/drug effects , Seizures/drug therapy , Synaptic Transmission/drug effects , Animals , Anticonvulsants/pharmacology , Epilepsy/drug therapy , Epilepsy/genetics , Epilepsy/physiopathology , Excitatory Amino Acid Transporter 2/metabolism , Excitatory Postsynaptic Potentials/drug effects , Excitatory Postsynaptic Potentials/genetics , Excitatory Postsynaptic Potentials/physiology , Glutamic Acid/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Hippocampus/physiopathology , Male , Rats, Wistar , Seizures/genetics , Seizures/physiopathology , Synaptic Transmission/genetics , Synaptic Transmission/physiology , Temporal Lobe/drug effects , Temporal Lobe/metabolism , Temporal Lobe/physiopathology
14.
Behav Brain Res ; 372: 112044, 2019 10 17.
Article in English | MEDLINE | ID: mdl-31220488

ABSTRACT

The aim of this study was to evaluate in detail behavioral patterns and comorbid disturbances in rats using the lithium-pilocarpine model. A comprehensive set of behavioral tests was used to investigate behavioral patterns, including the open field test, Morris water maze, Y-maze, fear conditioning, the elevated plus maze, the forced swimming test, and the resident-intruder paradigm. Motor and explorative activity, learning and memory, anxiety and depressive-like behavior, aggression, and communication were evaluated 8-15 d after pilocarpine-induced status epilepticus (SE) (latent phase of the model) and 41-53 d (chronic phase) after pilocarpine-induced SE. Increased motor activity and impaired memory function were the most noticeable behavioral modifications in the epileptic rats. Both the movement speed and distance traveled increased in the open field test in both the latent and chronic phases. Significant impairments were detected in short-and long-term spatial memory in the Morris water maze during the latent phase. Besides the alterations in spatial memory, behaviors indicative of short- and long-term fear-associated memory disturbances were observed in the fear conditioning test during the chronic phase of the model. In the resident-intruder paradigm, epileptic rats exhibited disturbed communicative behavior, with impaired social behaviors. In contrast, emotional disturbances were less prominent, with the rats exhibiting decreased anxiety. There were no changes in depressive-like behavior. The data suggest that the lithium-pilocarpine model of TLE in rodents is more useful for studies of comorbid disturbances in memory, hyperactivity, and social behavior than for research on psychoemotional impairments, such as anxiety and depression.


Subject(s)
Cognition/physiology , Emotions/physiology , Epilepsy, Temporal Lobe/physiopathology , Animals , Anxiety/chemically induced , Behavior, Animal/drug effects , Cognition/drug effects , Emotions/drug effects , Epilepsy/physiopathology , Exploratory Behavior/drug effects , Fear/drug effects , Lithium/pharmacology , Male , Memory Disorders/chemically induced , Motor Activity/drug effects , Motor Activity/physiology , Pilocarpine/pharmacology , Rats , Rats, Wistar , Social Behavior , Spatial Memory/drug effects , Status Epilepticus/physiopathology
15.
Cell Mol Neurobiol ; 39(2): 287-300, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30607810

ABSTRACT

The mechanisms of impairment in long-term potentiation after status epilepticus (SE) remain unclear. We investigated the properties of LTP induced by theta-burst stimulation in hippocampal slices of rats 3 h and 1, 3, and 7 days after SE. Seizures were induced in 3-week old rats by a single injection of pentylenetetrazole (PTZ). Only animals with generalized seizures lasting more than 30 min were included in the experiments. The results revealed that LTP was strongly attenuated in the CA1 hippocampal area after PTZ-induced SE as compared with that in control animals. Saturation of synaptic responses following epileptic activity does not explain weakening of LTP because neither the quantal size of the excitatory responses nor the slopes of the input-output curves for field excitatory postsynaptic potentials changed in the post-SE rats. After PTZ-induced SE, NMDA-dependent LTP was suppressed, and LTP transiently switched to the mGluR1-dependent form. This finding does not appear to have been reported previously in the literature. An antagonist of NMDA receptors, D-2-amino-5-phosphonovalerate, did not block LTP induction in 3-h and 1-day post-SE slices. An antagonist of mGluR1, FTIDS, completely prevented LTP in 1-day post-SE slices; whereas it did not affect LTP induction in control and post-SE slices at the other studied times. mGluR1-dependent LTP was postsynaptically expressed and did not require NMDA receptor activation. Recovery of NMDA-dependent LTP occurred 7 day after SE. Transient switching between NMDA-dependent LTP and mGluR1-dependent LTP could play a role in the pathogenesis of acquired epilepsy.


Subject(s)
CA1 Region, Hippocampal/physiopathology , CA3 Region, Hippocampal/physiopathology , Long-Term Potentiation , N-Methylaspartate/metabolism , Receptors, Metabotropic Glutamate/metabolism , Seizures/metabolism , Seizures/physiopathology , Synapses/metabolism , Animals , Excitatory Postsynaptic Potentials , Maze Learning , Pentylenetetrazole , Rats, Wistar , Receptors, AMPA/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Seizures/chemically induced , Spatial Memory
16.
Neurosci Lett ; 686: 94-100, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30189229

ABSTRACT

Temporal lobe epilepsy is the most prevalent form of complex partial seizure, and it is frequently triggered by an initial brain-damaging insult. The prevention of epileptogenesis after a primary event could be a key innovative approach to epilepsy treatment. Therefore, it is critical to understand the pathogenic mechanisms of this process in detail. Multiple mechanisms are involved in epileptogenesis, including alterations in the expression of synaptic receptors and transporters. The present study aimed to investigate the mRNA expression of excitatory amino acid transporters 1-3 (EAATs) and the subunits of the NMDA (GluN1, GluN2a, and GluN2b) and AMPA (GluA1 and GluA2) glutamate receptors following status epilepticus in a rat lithium-pilocarpine model. The analysis of the mRNA was performed via qRT-PCR one week after pilocarpine injections (the period of epileptogenesis) into the ventral and dorsal hippocampus and the entorhinal, temporal, and medial prefrontal cortexes - brain areas that are differentially involved in the pathogenesis of TLE. We found that increased EAAT2 mRNA levels in the medial prefrontal cortex and dorsal hippocampus may represent compensatory neuroprotective changes. Alterations in the gene expression levels of AMPA receptor subunits were found in the ventral hippocampus and temporal cortex. The reduced expression of the GluN2a subunit was observed in the temporal and entorhinal cortical areas and the ventral hippocampus, which may result in the predominance of GluN2b-containing NMDA receptors in these areas. The receptors with this altered subunit composition may be involved in pathophysiological mechanisms related to epileptogenesis. These data provide a better understanding of the pathogenesis of epilepsy.


Subject(s)
RNA, Messenger/metabolism , Receptors, Glutamate/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Seizures/metabolism , Animals , Disease Models, Animal , Hippocampus/drug effects , Hippocampus/metabolism , Male , Pilocarpine/pharmacology , Rats, Wistar , Receptors, AMPA/drug effects , Receptors, AMPA/metabolism , Receptors, Glutamate/drug effects , Receptors, N-Methyl-D-Aspartate/drug effects , Seizures/chemically induced
17.
Neurobiol Learn Mem ; 155: 231-238, 2018 11.
Article in English | MEDLINE | ID: mdl-30092312

ABSTRACT

Long (D2L) and Short (D2S) isoforms of D2 dopamine receptor differ in their biochemical and physiological properties, which could affect functioning of prefrontal cortex. Contribution of distinct D2 dopamine receptor isoforms to cognitive dysfunctions and its developmental regulation are currently not fully elucidated. In the present study, we evaluated developmental mRNA expression of D2S/D2L dopamine receptor isoforms within the rat medial prefrontal cortex (mPFC) in the model of neurodevelopmental cognitive dysfunction. Working memory performance (Y-maze spontaneous alternations) and D2S/D2L mRNA expression in the mPFC (by qRT-PCR) were evaluated in juvenile (P27), adolescent (P42-47) and adult (P75-90) rats after chronic early life treatment with proinflammatory cytokine interleukin (IL)-1ß (1 µg/kg i.p. daily P15-21). It was shown that IL-1ß elevation during the 3rd week of life leads to working memory deficit originating in juvenile animals and persisting into adulthood. D2S mRNA expression was strongly downregulated during adolescence, and such downregulation was exaggerated in animals injected with IL-1ß during P15-21. Early life IL-1ß administrations influenced developmental changes in the D2S/D2L mRNA ratio. This measure was found to be decreased in adolescent and adult control (intact and vehicle-treated) rats compared to juvenile control, while in the case of IL-1ß-treated animals, the decrease in D2S/D2L ratio was observed only in adulthood but not in adolescence compared to juvenile rats. During the adolescence, D2S mRNA expression was downregulated and D2S/D2L ratio was upregulated in the mPFC of rats treated with IL-1ß during the 3rd week of life compared to controls. Based on these data we conclude that changes in the developmental expression of D2 dopamine receptor splice variants within mPFC may underlie long-lasting cognitive deficit associated with neonatal pathology.


Subject(s)
Encephalitis/chemically induced , Interleukin-1beta/administration & dosage , Memory, Short-Term/physiology , Prefrontal Cortex/metabolism , Receptors, Dopamine D2/metabolism , Animals , Disease Models, Animal , Interleukin-1beta/physiology , Male , Memory, Short-Term/drug effects , Neurodevelopmental Disorders/chemically induced , Prefrontal Cortex/drug effects , Protein Isoforms/metabolism , RNA, Messenger/metabolism , Rats, Wistar
18.
Front Cell Neurosci ; 11: 264, 2017.
Article in English | MEDLINE | ID: mdl-28912687

ABSTRACT

Temporal lobe epilepsy (TLE) is the most common type of focal epilepsy in humans, and is often developed after an initial precipitating brain injury. This form of epilepsy is frequently resistant to pharmacological treatment; therefore, the prevention of TLE is the prospective approach to TLE therapy. The lithium-pilocarpine model in rats replicates some of the main features of TLE in human, including the pathogenic mechanisms of cell damage and epileptogenesis after a primary brain injury. In the present study, we investigated changes in the properties of glutamatergic transmission during the first 3 days after pilocarpine-induced acute seizures in Wistar rats (PILO-rats). Using RT-PCR and electrophysiological techniques, we compared the changes in the temporal cortex (TC) and hippocampus, brain areas differentially affected by seizures. On the first day, we found a transient increase in a ratio of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl d-aspartate (NMDA) receptors in the excitatory synaptic response in pyramidal neurons of the CA1 area of the dorsal hippocampus, but not in the TC. This was accompanied by an increase in the slope of input-output (I/O) curves for fEPSPs recorded in CA1, suggesting an enhanced excitability in AMPARs in this brain area. There was no difference in the AMPA/NMDA ratio in control rats on the third day. We also revealed the alterations in NMDA receptor subunit composition in PILO-rats. The GluN2B/GluN2A mRNA expression ratio increased in the dorsal hippocampus but did not change in the ventral hippocampus or the TC. The kinetics of NMDA-mediated evoked EPSCs in hippocampal neurons was slower in PILO-rats compared with control animals. Ifenprodil, a selective antagonist of GluN2B-containing NMDARs, diminished the area and amplitude of evoked EPSCs in CA1 pyramidal cells more efficiently in PILO-rats compared with control animals. These results demonstrate that PILO-induced seizures lead to more severe alterations in excitatory synaptic transmission in the dorsal hippocampus than in the TC. Seizures affect the relative contribution of AMPA and NMDA receptor conductances in the synaptic response and increase the proportion of GluN2B-containing NMDARs in CA1 pyramidal neurons. These alterations disturb normal circuitry functions in the hippocampus, may cause neuron damage, and may be one of the important pathogenic mechanisms of TLE.

19.
Behav Brain Res ; 333: 118-122, 2017 08 30.
Article in English | MEDLINE | ID: mdl-28673768

ABSTRACT

Long (D2L) and short (D2S) isoform of the D2 dopamine receptor are believed to play different roles in behavioral regulation. However, little is known about differential regulation of these isoforms mRNA expression during the process of learning in physiological and pathological states. In this study, we have investigated the combined effect of training in active avoidance (AA) paradigm and chronic early life treatment with pro-inflammatory cytokine interleukin (IL)-1ß (1µg/kg i.p., P15-21) on D2S and D2L dopamine receptor mRNA expression in the medial prefrontal cortex (mPFC) of adult rats. We have shown differential regulation of D2 short and long mRNA isoform expression in the mPFC. There was no effect of AA-training on D2S mRNA expression, while D2L mRNA was downregulated in AA-trained control (intact and saline-treated) animals, and this effect was not observed in rats treated with IL-1ß. D2S mRNA expression level negatively correlated with learning ability within control (saline-treated and intact) groups but not in IL-1ß-treated animals. Thus, prefrontal expression of distinct D2 dopamine receptor splice variants is supposed to be implicated in cognitive decline caused by early life immune challenge.


Subject(s)
Interleukin-1beta/pharmacology , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Protein Isoforms/genetics , RNA, Messenger/metabolism , Receptors, Dopamine D2/genetics , Analysis of Variance , Animals , Animals, Newborn , Avoidance Learning/drug effects , Gene Expression Regulation/drug effects , Learning Disabilities/chemically induced , Learning Disabilities/genetics , Protein Isoforms/metabolism , Rats , Rats, Wistar
20.
Neurotox Res ; 32(2): 175-186, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28421528

ABSTRACT

Bacterial intoxication associated with inflammatory conditions during development can impair brain functions, in particular evolutionarily novel forms of memory, such as explicit learning. Little is known about the dangers of early-life inflammation on more basic forms of learning, for example, the acquisition of motor escape abilities, which are generally better preserved under pathological conditions. To address this limitation in knowledge, an inflammatory response was elicited in Wistar pups by lipopolysaccharide (LPS) injections (25 µg/kg) on postnatal days P15, P18 and P21. The acquisition of escape behaviour was tested from P77 by active avoidance footshock model and water maze. Open-field behaviour and blood corticosterone levels were also measured. Rat brain tissue was collected from pups 2 h post-injection and from adult rats which either underwent escape training on P77-P81 or remained untrained. mRNA levels of developmental brain plasticity factors MMP-9 and TIMP-1 were investigated in the medial prefrontal cortex and ventral/dorsal hippocampus. LPS-challenged rats displayed moderately deficient escape responses in both memory tests, increased freezing behaviour and, surprisingly, reduced blood cortisol levels. Mmp9 and Timp1, and their ratio to one another, were differentially altered in pups versus adult untrained rats but remained unchanged overall in rats trained in either learning task. Together, our data indicate that systemic pro-inflammatory response during early postnatal development has long-lasting effects, including on the acquisition of motor escape abilities and plasticity factor expression, into adulthood. Our data suggest that altered stress response could possibly mediate these deviations and repeated training might generate positive effects on plasticity under the employed conditions.


Subject(s)
Avoidance Learning/drug effects , Brain/metabolism , Escape Reaction/drug effects , Gene Expression Regulation, Developmental/drug effects , Lipopolysaccharides/toxicity , Matrix Metalloproteinase 9/metabolism , Tissue Inhibitor of Metalloproteinase-1/metabolism , Age Factors , Animals , Animals, Newborn , Avoidance Learning/physiology , Brain/drug effects , Corticosterone/blood , Escape Reaction/physiology , Exploratory Behavior/drug effects , Female , Male , Matrix Metalloproteinase 9/genetics , Maze Learning/drug effects , RNA, Messenger/metabolism , Rats , Rats, Wistar , Statistics, Nonparametric , Time Factors , Tissue Inhibitor of Metalloproteinase-1/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...