Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters











Publication year range
1.
Autophagy ; : 1-14, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39113560

ABSTRACT

Aging is a gradual and irreversible physiological process that significantly increases the risks of developing a variety of pathologies, including neurodegenerative, cardiovascular, metabolic, musculoskeletal, and immune system diseases. Mitochondria are the energy-producing organelles, and their proper functioning is crucial for overall cellular health. Over time, mitochondrial function declines causing an increased release of harmful reactive oxygen species (ROS) and DNA, which leads to oxidative stress, inflammation and cellular damage, common features associated with various age-related pathologies. The impairment of mitophagy, the selective removal of damaged or dysfunctional mitochondria by autophagy, is relevant to the development and progression of age-related diseases. The molecular mechanisms that regulates mitophagy levels in aging remain largely uncharacterized. AMBRA1 is an intrinsically disordered scaffold protein with a unique property of regulating the activity of both proliferation and autophagy core machineries. While the role of AMBRA1 during embryonic development and neoplastic transformation has been extensively investigated, its functions in post-mitotic cells of adult tissues have been limited due to the embryonic lethality caused by AMBRA1 deficiency. Recently, a key role of AMBRA1 in selectively regulating mitophagy in post-mitotic cells has emerged. Here we summarize and discuss these results with the aim of providing a comprehensive view of the mitochondrial roles of AMBRA1, and how defective activity of AMBRA1 has been functionally linked to mitophagy alterations observed in age-related degenerative disorders, including muscular dystrophy/sarcopenia, Parkinson diseases, Alzheimer diseases and age-related macular degeneration.Abbreviations: AD: Alzheimer disease; AMD: age-related macular degeneration; AMBRA1: autophagy and beclin 1 regulator 1; APOE4: apolipoprotein E4; ATAD3A: ATPase family AAA domain containing 3A; ATG: autophagy related; BCL2: BCL2 apoptosis regulator; BH3: BCL2-homology-3; BNIP3L/NIX: BCL2 interacting protein 3 like; CDK: cyclin dependent kinase; CHUK/IKKα: component of inhibitor of nuclear factor kappa B kinase complex; CRL2: CUL2-RING ubiquitin ligase; DDB1: damage specific DNA binding protein 1; ER: endoplasmic reticulum; FOXO: forkhead box O; FUNDC1: FUN14 domain containing 1; GBA/ß-glucocerebrosidase: glucosylceramidase beta; HUWE1: HECT, UBA and WWE domain containing E3 ubiquitin protein ligase 1; IDR: intrinsically disordered region; LIR: LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAVS: mitochondrial antiviral signaling protein; MCL1: MCL1 apoptosis regulator, BCL2 family member; MFN2: mitofusin 2; MTOR: mechanistic target of rapamycin kinase; MSA: multiple system atrophy; MYC: MYC proto-oncogene, bHLH transcription factor; NUMA1: nuclear mitotic apparatus protein 1; OMM; mitochondria outer membrane; PD: Parkinson disease; PHB2: prohibitin 2; PINK1: PTEN induced kinase 1; PIK3C3/VPS34: phosphatidylinositol 3-kinase catalytic subunit type 3; PTK2/FAK: protein tyrosine kinase 2; ROS: reactive oxygen species; RPE: retinal pigment epithelium; SAD: sporadic AD; SOCS3: suppressor of cytokine signaling 3; SRC, SRC proto-oncogene, non-receptor tyrosine kinase; STAT3: signal transducer and activator of transcription 3; STING1: stimulator of interferon response cGAMP interactor 1; SQSTM1/p62: sequestosome 1; TBK1: TANK binding kinase 1; TGFB/TGFß: transforming growth factor beta; TOMM: translocase of outer mitochondrial membrane; TRAF6: TNF receptor associated factor 6; TRIM32: tripartite motif containing 32; ULK1: unc-51 like autophagy activating kinase 1.

2.
BMC Cancer ; 24(1): 77, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38225605

ABSTRACT

BACKGROUND: KRAS is the undisputed champion of oncogenes, and despite its prominent role in oncogenesis as mutated gene, KRAS mutation appears infrequent in gliomas. Nevertheless, gliomas are considered KRAS-driven cancers due to its essential role in mouse malignant gliomagenesis. Glioblastoma is the most lethal primary brain tumor, often associated with disturbed RAS signaling. For newly diagnosed GBM, the current standard therapy is alkylating agent chemotherapy combined with radiotherapy. Cisplatin is one of the most effective anticancer drugs and is used as a first-line treatment for a wide spectrum of solid tumors (including medulloblastoma and neuroblastoma) and many studies are currently focused on new delivery modalities of effective cisplatin in glioblastoma. Its mechanism of action is mainly based on DNA damage, inducing the formation of DNA adducts, triggering a series of signal-transduction pathways, leading to cell-cycle arrest, DNA repair and apoptosis. METHODS: Long-term cultures of human glioblastoma, U87MG and U251MG, were either treated with cis-diamminedichloroplatinum (cisplatin, CDDP) and/or MEK-inhibitor PD98059. Cytotoxic responses were assessed by cell viability (MTT), protein expression (Western Blot), cell cycle (PI staining) and apoptosis (TUNEL) assays. Further, gain-of-function experiments were performed with cells over-expressing mutated hypervariable region (HVR) KRASG12V plasmids. RESULTS: Here, we studied platinum-based chemosensitivity of long-term cultures of human glioblastoma from the perspective of KRAS expression, by using CDDP and MEK-inhibitor. Endogenous high KRAS expression was assessed at transcriptional (qPCR) and translational levels (WB) in a panel of primary and long-term glioblastoma cultures. Firstly, we measured immediate cellular adjustment through direct regulation of protein concentration of K-Ras4B in response to cisplatin treatment. We found increased endogenous protein abundance and involvement of the effector pathway RAF/MEK/ERK mitogen-activated protein kinase (MAPK) cascade. Moreover, as many MEK inhibitors are currently being clinically evaluated for the treatment of high-grade glioma, so we concomitantly tested the effect of the potent and selective non-ATP-competitive MEK1/2 inhibitor (PD98059) on cisplatin-induced chemosensitivity in these cells. Cell-cycle phase distribution was examined using flow cytometry showing a significant cell-cycle arrest in both cultures at different percentage, which is modulated by MEK inhibition. Cisplatin-induced cytotoxicity increased sub-G1 percentage and modulates G2/M checkpoint regulators cyclins D1 and A. Moreover, ectopic expression of a constitutively active KRASG12V rescued CDDP-induced apoptosis and different HVR point mutations (particularly Ala 185) reverted this phenotype. CONCLUSION: These findings warrant further studies of clinical applications of MEK1/2 inhibitors and KRAS as 'actionable target' of cisplatin-based chemotherapy for glioblastoma.


Subject(s)
Antineoplastic Agents , Glioblastoma , Proto-Oncogene Proteins p21(ras) , Humans , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cisplatin/pharmacology , Glioblastoma/drug therapy , Glioblastoma/genetics , Mitogen-Activated Protein Kinase Kinases , Platinum/pharmacology , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism
3.
Redox Rep ; 27(1): 150-157, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35822835

ABSTRACT

BACKGROUND: Although the protooncogenes small GTPases Ras are redox-sensitive proteins, how they are regulated by redox signaling in the central nervous system (CNS) is still poorly understood. Alteration in redox-sensitive targets by redox signaling may have myriad effects on Ras stability, activity and localization. Redox-mediated changes in astrocytic RAS may contribute to the control of redox homeostasis in the CNS that is connected to the pathogenesis of many diseases. RESULTS AND METHODS: Here, we investigated the transient physiological induction, at both transcriptional and translational levels, of small GTPases Ras in response to redox stimulation. Cultured astrocytes were treated with hydrogen peroxide as in bolus addition and relative mRNA levels of murine hras and kras genes were detected by qRT-PCR. We found that de novo transcription of hras mRNA in reactive astrocytes is redox-sensitive and mimics the prototypical redox-sensitive gene iNOS. Protein abundance in combination with protein turnover measurements by cycloheximide-chase experiments revealed distinct translation efficiency, GTP-bound enrichment, and protein turnover rates between the two isoforms H-Ras and K-Ras. CONCLUSION: Reports from recent years support a significant role of H-Ras in driving redox processes. Beyond its canonical functions, Ras may impact on the core astrocytic cellular machinery that operates during redox stimulation.


Subject(s)
Monomeric GTP-Binding Proteins , Proto-Oncogene Proteins p21(ras) , Animals , Astrocytes/metabolism , Mice , Monomeric GTP-Binding Proteins/metabolism , Oxidation-Reduction , Proto-Oncogene Proteins p21(ras)/metabolism , RNA, Messenger/metabolism , ras Proteins/genetics , ras Proteins/metabolism
4.
Mol Biol Rep ; 49(9): 9071-9077, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35733059

ABSTRACT

BACKGROUND: Dried blood spot (DBS) testing is a well-known method of bio-sampling by which blood samples are blotted and dried on filter paper. The dried samples can then be analyzed by several techniques such as DNA amplification and HPLC. We have developed a non-invasive sampling followed by an alternative protocol for genomic DNA extraction from a drop of blood adsorbed on paper support. This protocol consists of two separate steps: (1) organic DNA extraction from the DBS, followed by (2) DNA amplification by polymerase chain reaction (PCR). The PCR-restriction fragment length polymorphism (PCR-RFLP) is an advantageous and simple approach to detect single nucleotide polymorphisms (SNPs). RESULTS: We have evaluated the efficiency of our method for the extraction of genomic DNA from DBS by testing its performance in genotyping mouse models of obesity and herein discuss the specificity and feasibility of this novel procedure. CONCLUSIONS: Our protocol is easy to perform, fast and inexpensive and allows the isolation of pure DNA from a tiny amount of sample.


Subject(s)
DNA , Genotyping Techniques , Animals , DNA/analysis , Genotype , Mice , Polymerase Chain Reaction/methods , Polymorphism, Restriction Fragment Length
5.
Front Microbiol ; 13: 1090197, 2022.
Article in English | MEDLINE | ID: mdl-36687661

ABSTRACT

The fraction of low-abundance microbiota in the marine environment is a promising target for discovering new bioactive molecules with pharmaceutical applications. Phenomena in the ocean such as diel vertical migration (DVM) and seasonal dynamic events influence the pattern of diversity of marine bacteria, conditioning the probability of isolation of uncultured bacteria. In this study, we report a new marine bacterium belonging to the rare biosphere, Leeuwenhoekiella parthenopeia sp. nov. Mr9T, which was isolated employing seasonal and diel sampling approaches. Its complete characterization, ecology, biosynthetic gene profiling of the whole genus Leeuwenhoekiella, and bioactivity of its extract on human cells are reported. The phylogenomic and microbial diversity studies demonstrated that this bacterium is a new and rare species, barely representing 0.0029% of the bacterial community in Mediterranean Sea metagenomes. The biosynthetic profiling of species of the genus Leeuwenhoekiella showed nine functionally related gene cluster families (GCF), none were associated with pathways responsible to produce known compounds or registered patents, therefore revealing its potential to synthesize novel bioactive compounds. In vitro screenings of L. parthenopeia Mr9T showed that the total lipid content (lipidome) of the cell membrane reduces the prostatic and brain tumor cell viability with a lower effect on normal cells. The lipidome consisted of sulfobacin A, WB 3559A, WB 3559B, docosenamide, topostin B-567, and unknown compounds. Therefore, the bioactivity could be attributed to any of these individual compounds or due to their synergistic effect. Beyond the rarity and biosynthetic potential of this bacterium, the importance and novelty of this study is the employment of sampling strategies based on ecological factors to reach the hidden microbiota, as well as the use of bacterial membrane constituents as potential novel therapeutics. Our findings open new perspectives on cultivation and the relationship between bacterial biological membrane components and their bioactivity in eukaryotic cells, encouraging similar studies in other members of the rare biosphere.

6.
Int J Mol Sci ; 21(17)2020 Aug 20.
Article in English | MEDLINE | ID: mdl-32825330

ABSTRACT

The estrogen receptor (ER) signaling regulates numerous physiological processes mainly through activation of gene transcription (genomic pathways). Caveolin1 (CAV1) is a membrane-resident protein that behaves as platform to enable different signaling molecules and receptors for membrane-initiated pathways. CAV1 directly interacts with ERs and allows their localization on membrane with consequent activation of ER-non-genomic pathways. Loss of CAV1 function is a common feature of different types of cancers, including breast cancer. Two protein isoforms, CAV1α and CAV1ß, derived from two alternative translation initiation sites, are commonly described for this gene. However, the exact transcriptional regulation underlying CAV1 expression pattern is poorly elucidated. In this study, we dissect the molecular mechanism involved in selective expression of CAV1ß isoform, induced by estrogens and downregulated in breast cancer. Luciferase assays and Chromatin immunoprecipitation demonstrate that transcriptional activation is triggered by estrogen-responsive elements embedded in CAV1 intragenic regions and DNA-binding of estrogen-ER complexes. This regulatory control is dynamically established by local chromatin changes, as proved by the occurrence of histone H3 methylation/demethylation events and association of modifier proteins as well as modification of H3 acetylation status. Thus, we demonstrate for the first time, an estrogen-ERs-dependent regulatory circuit sustaining selective CAV1ß expression.


Subject(s)
Breast Neoplasms/genetics , Caveolin 1/genetics , Response Elements , Adult , Aged , Cell Line, Tumor , Estradiol/pharmacology , Female , Gene Expression Regulation, Neoplastic/drug effects , Histones/genetics , Histones/metabolism , Humans , Lysine/metabolism , Methylation , Middle Aged , Receptors, Estrogen/genetics , Response Elements/drug effects , Response Elements/genetics
7.
BMC Res Notes ; 13(1): 374, 2020 Aug 08.
Article in English | MEDLINE | ID: mdl-32771050

ABSTRACT

OBJECTIVE: Glioblastoma (GBM) is the most aggressive and common form of primary brain cancer. Survival is poor and improved treatment options are urgently needed. Dual specificity phosphatase-6 (DUSP6) is actively involved in oncogenesis showing unexpected tumor-promoting properties in human glioblastoma, contributing to the development and expression of the full malignant and invasive phenotype. The purpose of this study was to assess if DUSP6 activates epithelial-to-mesenchymal transition (EMT) in glioblastoma and its connection with the invasive capacity. RESULTS: We found high levels of transcripts mRNA by qPCR analysis in a panel of primary GBM compared to adult or fetal normal tissues. At translational levels, these data correlate with high protein expression and long half-life values by cycloheximide-chase assay in immunoblot experiments. Next, we demonstrate that DUSP6 gene is involved in epithelial-to-mesenchymal transition (EMT) in GBM by immunoblot characterization of the mesenchymal and epithelial markers. Vimentin, N-Cadherin, E-Cadherin and fibronectin were measured with and without DUSP6 over-expression, and in response to several stimuli such as chemotherapy treatment. In particular, the high levels of vimentin were blunted at increasing doses of cisplatin in condition of DUSP6 over-expression while N-Cadherin contextually increased. Finally, DUSP6 per se increased invasion capacity of GBM. Overall, our data unveil the DUSP6 involvement in invasive mesenchymal-like properties in GBM.


Subject(s)
Brain Neoplasms , Glioblastoma , Adult , Brain Neoplasms/genetics , Cell Line, Tumor , Dual Specificity Phosphatase 6 , Dual-Specificity Phosphatases , Epithelial-Mesenchymal Transition/genetics , Glioblastoma/genetics , Humans
8.
Acta Diabetol ; 57(8): 947-958, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32130518

ABSTRACT

AIMS: Excessive glucose serum concentration, endothelial dysfunction and microangiopathy are key features of diabetes mellitus, being both diagnostic parameters and pathogenetic mechanisms. Vascular endothelial growth factor (VEGF) is importantly implicated in the physiology and pathology of blood vessels, including diabetic vascular damage. METHODS: These factors certainly affect endothelial cells, and to evaluate mechanisms involved, we took advantage of telomerase-immortalized human microvascular endothelial (TIME) cells. TIME cells were exposed to different glucose concentrations and to VEGF treatments. Culture conditions also included the use of basement membrane extract, as an in vitro differentiation model. Cell morphology was then evaluated in the different conditions, and cellular proteins were extracted to analyze specific protein products by Western blot. RESULTS: High glucose concentrations and VEGF did substantially affect neither morphology nor growth of cultured TIME cells, while both considerably increased differentiation into "capillary-like" structures when cells were cultured on basement membrane extract. CONCLUSIONS: Under these conditions, high glucose concentration and VEGF also produced a short-term increase in pERK1/2 and p85 proteins, while total and phosphorylated AKT were not affected. These data suggest a direct angiogenetic effect of glucose, affecting intracellular transduction mechanisms with an action similar to that of VEGF. This effect on endothelial cell proliferation and differentiation could be part of pathogenetic mechanisms producing diabetic microvascular alterations.


Subject(s)
Angiogenesis Inducing Agents/metabolism , Class Ia Phosphatidylinositol 3-Kinase/metabolism , Glucose/pharmacology , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Vascular Endothelial Growth Factor A/pharmacology , Angiogenesis Inducing Agents/pharmacology , Cell Proliferation/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Humans , Phosphorylation/drug effects , Up-Regulation/drug effects
9.
Reprod Domest Anim ; 55(4): 530-536, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31985871

ABSTRACT

The aim of this study was to evaluate the treatment of bovine semen with the pan-caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (Z-VAD-FMK), before or after freezing on semen quality. After the initial assessment, sperm from 4 bulls were pooled (Experiment 1) and cryopreserved in BioXcell containing 0, 20 and 100 µM Z-VAD-FMK. After thawing semen viability, motility, membrane integrity, as well as DNA fragmentation and ΔΨm were evaluated. In Experiment 2, bovine frozen/thawed sperm were incubated for 1 hr with 0, 20 and 100 µM Z-VAD-FMK before assessing the semen quality. The treatment with Z -VAD-FMK before cryopreservation improved post-thawing sperm motility compared to the control group (p < .05), while no differences were recorded in sperm viability and membrane integrity among groups (on average 86.8 ± 1.5 and 69.1 ± 1.4, respectively). Interestingly, at the highest concentration, DNA fragmentation decreased (p < .05), while the percentage of spermatozoa with high ΔΨm increased (p < .05). The results of Experiment 2 showed that 1-hr treatment with Z-VAD-FMK did not affect sperm motility and viability (on average 63.4 ± 5.8 and 83.7.1 ± 1.2, respectively). However, Z-VAD-FMK improved sperm membrane integrity (p < .05) and at the highest concentration tested decreased the proportion of sperm showing DNA fragmentation (p < .05). No differences were recorded in the percentage of spermatozoa with high ΔΨm (on average 57.0 ± 11.4). In conclusion, the treatment with 100 µM of the caspase inhibitor Z-VAD-FMK before freezing increased bovine sperm mass motility and ΔΨm, while decreasing sperm DNA fragmentation. Treatment of semen after thawing with 100 µM Z-VAD-FMK improved sperm membrane integrity and reduced DNA fragmentation.


Subject(s)
Amino Acid Chloromethyl Ketones/pharmacology , Caspase Inhibitors/pharmacology , Spermatozoa/drug effects , Animals , Cattle , Cell Survival , Cryopreservation/methods , Cryopreservation/veterinary , DNA Fragmentation , Freezing , Male , Semen Preservation/methods , Semen Preservation/veterinary , Sperm Motility , Spermatozoa/physiology
10.
Proc Natl Acad Sci U S A ; 116(31): 15625-15634, 2019 07 30.
Article in English | MEDLINE | ID: mdl-31308239

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is an inflammatory condition associated with abnormal immune responses, leading to airflow obstruction. Lungs of COPD subjects show accumulation of proinflammatory T helper (Th) 1 and Th17 cells resembling that of autoreactive immune responses. As regulatory T (Treg) cells play a central role in the control of autoimmune responses and their generation and function are controlled by the adipocytokine leptin, we herein investigated the association among systemic leptin overproduction, reduced engagement of glycolysis in T cells, and reduced peripheral frequency of Treg cells in different COPD stages. These phenomena were also associated with an impaired capacity to generate inducible Treg (iTreg) cells from conventional T (Tconv) cells. At the molecular level, we found that leptin inhibited the expression of forkhead-boxP3 (FoxP3) and its splicing variants containing the exon 2 (FoxP3-E2) that correlated inversely with inflammation and weakened lung function during COPD progression. Our data reveal that the immunometabolic pathomechanism leading to COPD progression is characterized by leptin overproduction, a decline in the expression of FoxP3 splicing forms, and an impairment in Treg cell generation and function. These results have potential implications for better understanding the autoimmune-like nature of COPD and the pathogenic events leading to lung damage.


Subject(s)
Alternative Splicing/immunology , Forkhead Transcription Factors , Leptin , Pulmonary Disease, Chronic Obstructive , T-Lymphocytes, Regulatory , Female , Forkhead Transcription Factors/biosynthesis , Forkhead Transcription Factors/immunology , Humans , Leptin/biosynthesis , Leptin/immunology , Male , Middle Aged , Pulmonary Disease, Chronic Obstructive/immunology , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Disease, Chronic Obstructive/pathology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , T-Lymphocytes, Regulatory/pathology , Th1 Cells/immunology , Th1 Cells/metabolism , Th1 Cells/pathology , Th17 Cells/immunology , Th17 Cells/metabolism , Th17 Cells/pathology
11.
Sci Rep ; 9(1): 3925, 2019 03 08.
Article in English | MEDLINE | ID: mdl-30850627

ABSTRACT

We show that transcription induced by nuclear receptors for estrogen (E2) or retinoic acid (RA) is associated with formation of chromatin loops that juxtapose the 5' end (containing the promoter) with the enhancer and the 3' polyA addition site of the target gene. We find three loop configurations which change as a function of time after induction: 1. RA or E2-induced loops which connect the 5' end, the enhancer and the 3' end of the gene, and are stabilized by RNA early after induction; 2. E2-independent loops whose stability does not require RNA; 3. Loops detected only by treatment of chromatin with RNAse H1 prior to hormonal induction. RNAse H1 digests RNA that occludes the relevant restriction sites, thus preventing detection of these loops. R-loops at the 5' and 3' ends of the RA or E2-target genes were demonstrated by immunoprecipitation with anti-DNA-RNA hybrid antibodies as well as by sensitivity to RNAse H1. The cohesin RAD21 subunit is preferentially recruited to the target sites upon RA or E2 induction of transcription. RAD21 binding to chromatin is eliminated by RNAse H1. We identified E2-induced and RNase H1-sensitive antisense RNAs located at the 5' and 3' ends of the E2-induced transcription unit which stabilize the loops and RAD21 binding to chromatin. This is the first report of chromatin loops that form after gene induction that are maintained by RNA:DNA hybrids.


Subject(s)
Chromatin/genetics , Chromatin/metabolism , Estradiol/metabolism , RNA/metabolism , Tretinoin/metabolism , Caspase 9/genetics , Caveolin 1/genetics , Cell Cycle Proteins/metabolism , Chromatin/drug effects , DNA-Binding Proteins/metabolism , Enhancer Elements, Genetic , Estradiol/pharmacology , Female , Humans , MCF-7 Cells , Models, Biological , Promoter Regions, Genetic , Proto-Oncogene Proteins c-bcl-2/genetics , RNA/genetics , RNA Stability/drug effects , Ribonuclease H/metabolism , Transcription, Genetic/drug effects , Tretinoin/pharmacology
12.
Ann Neurol ; 85(2): 296-301, 2019 02.
Article in English | MEDLINE | ID: mdl-30549309

ABSTRACT

Easily accessible biomarkers in Huntington disease (HD) are actively searched. We investigated telomere length and DNA double-strand breaks (histone variant pγ-H2AX) as predictive disease biomarkers in peripheral blood mononuclear cells (PBMC) from 25 premanifest subjects, 58 HD patients with similar CAG expansion in the huntingtin gene (HTT), and 44 healthy controls (HC). PBMC from the pre-HD and HD groups showed shorter telomeres (p < 0.0001) and a significant increase of pγ-H2AX compared to the controls (p < 0.0001). The levels of pγ-H2AX correlated robustly with the presence of the mutated gene in pre-HD and HD. The availability of a potentially reversible biomarker (pγ-H2AX) in the premanifest stage of HD, negligible in HC, provides a novel tool to monitor premanifest subjects and find patient-specific drugs. Ann Neurol 2018;00:1-6 ANN NEUROL 2019;85:296-301.


Subject(s)
DNA Damage , Huntington Disease/metabolism , Prodromal Symptoms , Telomere/metabolism , Adult , Aged , Biomarkers/metabolism , Case-Control Studies , Female , Flow Cytometry , Histones/metabolism , Humans , Leukocytes, Mononuclear , Male , Middle Aged , Phosphorylation , Young Adult
13.
Sci Data ; 4: 170043, 2017 04 11.
Article in English | MEDLINE | ID: mdl-28398335

ABSTRACT

Genome-wide methylation analysis is limited by its low coverage and the inability to detect single variants below 10%. Quantitative analysis provides accurate information on the extent of methylation of single CpG dinucleotide, but it does not measure the actual polymorphism of the methylation profiles of single molecules. To understand the polymorphism of DNA methylation and to decode the methylation signatures before and after DNA damage and repair, we have deep sequenced in bisulfite-treated DNA a reporter gene undergoing site-specific DNA damage and homologous repair. In this paper, we provide information on the data generation, the rationale for the experiments and the type of assays used, such as cytofluorimetry and immunoblot data derived during a previous work published in Scientific Reports, describing the methylation and expression changes of a model gene (GFP) before and after formation of a double-strand break and repair by homologous-recombination or non-homologous-end-joining. These data provide: 1) a reference for the analysis of methylation polymorphism at selected loci in complex cell populations; 2) a platform and the tools to compare transcription and methylation profiles.


Subject(s)
DNA Damage , DNA Methylation , DNA Repair , Base Sequence , Humans , Sulfites
14.
Sci Rep ; 6: 33222, 2016 09 15.
Article in English | MEDLINE | ID: mdl-27629060

ABSTRACT

We characterize the changes in chromatin structure, DNA methylation and transcription during and after homologous DNA repair (HR). We find that HR modifies the DNA methylation pattern of the repaired segment. HR also alters local histone H3 methylation as well chromatin structure by inducing DNA-chromatin loops connecting the 5' and 3' ends of the repaired gene. During a two-week period after repair, transcription-associated demethylation promoted by Base Excision Repair enzymes further modifies methylation of the repaired DNA. Subsequently, the repaired genes display stable but diverse methylation profiles. These profiles govern the levels of expression in each clone. Our data argue that DNA methylation and chromatin remodelling induced by HR may be a source of permanent variation of gene expression in somatic cells.


Subject(s)
Chromatin , DNA Damage , DNA Methylation , DNA Repair , Alleles , Histones/genetics , Humans , Methylation
15.
Nat Immunol ; 16(11): 1174-84, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26414764

ABSTRACT

Human regulatory T cells (T(reg) cells) that develop from conventional T cells (T(conv) cells) following suboptimal stimulation via the T cell antigen receptor (TCR) (induced T(reg) cells (iT(reg) cells)) express the transcription factor Foxp3, are suppressive, and display an active proliferative and metabolic state. Here we found that the induction and suppressive function of iT(reg) cells tightly depended on glycolysis, which controlled Foxp3 splicing variants containing exon 2 (Foxp3-E2) through the glycolytic enzyme enolase-1. The Foxp3-E2-related suppressive activity of iT(reg) cells was altered in human autoimmune diseases, including multiple sclerosis and type 1 diabetes, and was associated with impaired glycolysis and signaling via interleukin 2. This link between glycolysis and Foxp3-E2 variants via enolase-1 shows a previously unknown mechanism for controlling the induction and function of T(reg) cells in health and in autoimmunity.


Subject(s)
Forkhead Transcription Factors/genetics , Glycolysis/genetics , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Adult , Alternative Splicing , Autoimmunity , Biomarkers, Tumor/antagonists & inhibitors , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , CD4-Positive T-Lymphocytes/classification , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Case-Control Studies , DNA-Binding Proteins/antagonists & inhibitors , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Exons , Fatty Acids/metabolism , Female , Forkhead Transcription Factors/antagonists & inhibitors , Forkhead Transcription Factors/metabolism , Gene Knockdown Techniques , Genetic Variation , Humans , In Vitro Techniques , Male , Metabolome , Middle Aged , Multiple Sclerosis, Relapsing-Remitting/genetics , Multiple Sclerosis, Relapsing-Remitting/immunology , Multiple Sclerosis, Relapsing-Remitting/metabolism , Oxidation-Reduction , Phosphopyruvate Hydratase/antagonists & inhibitors , Phosphopyruvate Hydratase/genetics , Phosphopyruvate Hydratase/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Antigen, T-Cell/metabolism , Signal Transduction/immunology , T-Lymphocytes, Regulatory/classification , Tumor Suppressor Proteins/antagonists & inhibitors , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Young Adult
16.
Nucleic Acids Res ; 42(17): 11040-55, 2014.
Article in English | MEDLINE | ID: mdl-25217584

ABSTRACT

Histone methylation changes and formation of chromatin loops involving enhancers, promoters and 3' end regions of genes have been variously associated with active transcription in eukaryotes. We have studied the effect of activation of the retinoic A receptor, at the RARE-promoter chromatin of CASP9 and CYP26A1 genes, 15 and 45 min following RA exposure, and we found that histone H3 lysines 4 and 9 are demethylated by the lysine-specific demethylase, LSD1 and by the JMJ-domain containing demethylase, D2A. The action of the oxidase (LSD1) and a dioxygenase (JMJD2A) in the presence of Fe++ elicits an oxidation wave that locally modifies the DNA and recruits the enzymes involved in base and nucleotide excision repair (BER and NER). These events are essential for the formation of chromatin loop(s) that juxtapose the RARE element with the 5' transcription start site and the 3' end of the genes. The RARE bound-receptor governs the 5' and 3' end selection and directs the productive transcription cycle of RNA polymerase. These data mechanistically link chromatin loops, histone methylation changes and localized DNA repair with transcription.


Subject(s)
Chromatin/chemistry , Histone Code , Transcription, Genetic , Tretinoin/pharmacology , Caspase 9/genetics , Chromatin/drug effects , Chromatin/enzymology , Cytochrome P-450 Enzyme System/genetics , DNA/metabolism , DNA Repair Enzymes/metabolism , Histone Code/drug effects , Histone Demethylases/metabolism , Histones/metabolism , Humans , MCF-7 Cells , Methylation/drug effects , Oxidation-Reduction , Promoter Regions, Genetic , RNA Polymerase II/metabolism , Receptors, Retinoic Acid/metabolism , Retinoic Acid 4-Hydroxylase , Transcription, Genetic/drug effects
17.
Nucleic Acids Res ; 42(2): 804-21, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24137009

ABSTRACT

We report that homology-directed repair of a DNA double-strand break within a single copy Green Fluorescent Protein (GFP) gene in HeLa cells alters the methylation pattern at the site of recombination. DNA methyl transferase (DNMT)1, DNMT3a and two proteins that regulate methylation, Np95 and GADD45A, are recruited to the site of repair and are responsible for selective methylation of the promoter-distal segment of the repaired DNA. The initial methylation pattern of the locus is modified in a transcription-dependent fashion during the 15-20 days following repair, at which time no further changes in the methylation pattern occur. The variation in DNA modification generates stable clones with wide ranges of GFP expression. Collectively, our data indicate that somatic DNA methylation follows homologous repair and is subjected to remodeling by local transcription in a discrete time window during and after the damage. We propose that DNA methylation of repaired genes represents a DNA damage code and is source of variation of gene expression.


Subject(s)
DNA Methylation , Recombinational DNA Repair , Transcription, Genetic , CCAAT-Enhancer-Binding Proteins/metabolism , Cell Cycle Proteins/metabolism , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Breaks, Double-Stranded , DNA Methyltransferase 3A , Green Fluorescent Proteins/genetics , HeLa Cells , Humans , Nuclear Proteins/metabolism , Ubiquitin-Protein Ligases
18.
J Cell Biochem ; 114(9): 2114-9, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23553770

ABSTRACT

Phosphoinositide 3-kinase proteins are composed by a catalytic p110 subunit and a regulatory p85 subunit. There are three classes of PI3K, named class I-III, on the bases of the protein domain constituting and determining their specificity. The first one is the best characterized and includes a number of key elements for the integration of different cellular signals. Regulatory p85 subunit shares with the catalytic p110 subunit, a N-terminal SH3 domain showing homology with the protein domain Rho-GTP-ase. After cell stimulation, all class I PI3Ks are recruited to the inner face of the plasma membrane, where they generate phosphatidylinositol-3,4,5-trisphosphate by direct phosphorylation of phosphatidylinositol-4,5-bisphosphate. All pathways trigger the control of different phenomena such as cell growth, proliferation, apoptosis, adhesion and migration through various downstream effectors. We have previously provided direct evidences that a Serine in position 83, adjacent to the N-terminal SH3 domain of regulatory subunit of PI3K, is a substrate of PKA. The aim of this work is to confirm the role of p85αPI3KSer83 in regulating cell proliferation, migration and invasion in prostate cancer cells LNCaP. To this purpose cells were transfected with mutant forms of p85, where Serine was replaced by Alanine, where phosphorylation is prevented, or Aspartic Acid, to mimic the phosphorylated residue. The findings of this study suggest that identifying a peptide mimicking the sequence adjacent to Ser 83 may be used to produce antibodies against this residue that can be proposed as usefool tool for prognosis by correlating phosphorylation at Ser83 with tumor stage.


Subject(s)
Phosphatidylinositol 3-Kinases/chemistry , Phosphatidylinositol 3-Kinases/metabolism , Prostatic Neoplasms/metabolism , Protein Subunits/metabolism , Serine/metabolism , Apoptosis/genetics , Apoptosis/physiology , Cell Line, Tumor , Cell Proliferation , Humans , Male , Microscopy, Confocal , Phosphatidylinositol 3-Kinases/genetics , Phosphorylation , Prostatic Neoplasms/genetics , Protein Subunits/chemistry , Protein Subunits/genetics , Signal Transduction/genetics , Signal Transduction/physiology
19.
Int J Oncol ; 40(5): 1627-35, 2012 May.
Article in English | MEDLINE | ID: mdl-22366926

ABSTRACT

Phosphoinositide-3-OH kinase (PI3K) signalling regulates various cellular processes, including cell survival, growth, proliferation and motility, and is among the most frequently mutated pathways in cancer. Although the involvement of p85αPI3K SH2 domain in signal transduction has been extensively studied, the function of the SH3 domain at the N-terminus remains elusive. A serine (at codon 83) adjacent to the N-terminal SH3 domain in the PI3K regulatory subunit p85αPI3K that is phosphorylated by protein kinase A (PKA) in vivo and in vitro has been identified. Virtually all receptors binding p85αPI3K can cooperate with cAMP-PKA signals via phosphorylation of p85αPI3KSer83. To analyse the role of p85αPI3KSer83 in retinoic acid (RA) and cAMP signalling, in MCF7 cells, we used p85αPI3K mutated forms, in which Ser83 has been substituted with alanine (p85A) to prevent phosphorylation or with aspartic acid (p85D) to mimic the phosphorylated residue. We demonstrated that p85αPI3KSer83 is crucial for the synergistic enhancement of RARα/p85αPI3K binding induced by cAMP/RA co-treatment in MCF7 cells. Growth curves, colorimetric MTT assay and cell cycle analysis demonstrated that phosphorylation of p85αPI3KSer83 plays an important role in the control of MCF7 cell proliferation and in RA-induced inhibition of proliferation. Wound healing and transwell experiments demonstrated that p85αPI3KSer83 was also essential both for the control of migratory behaviour and for the reduction of motility induced by RA. This study points to p85αPI3KSer83 as the physical link between different pathways (cAMP-PKA, RA and FAK), and as an important regulator of MCF7 cell proliferation and migration.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/enzymology , Cell Movement/drug effects , Cell Proliferation/drug effects , Class Ia Phosphatidylinositol 3-Kinase/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Cyclic AMP/metabolism , Tretinoin/pharmacology , Alanine , Animals , Aspartic Acid , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cattle , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Class Ia Phosphatidylinositol 3-Kinase/chemistry , Class Ia Phosphatidylinositol 3-Kinase/genetics , Female , Humans , Mutation , Neoplasm Invasiveness , Phosphorylation , Receptors, Retinoic Acid/drug effects , Receptors, Retinoic Acid/metabolism , Retinoic Acid Receptor alpha , Serine , Signal Transduction/drug effects , Time Factors , Transfection , src Homology Domains
SELECTION OF CITATIONS
SEARCH DETAIL