Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Vet Sci ; 10: 1284025, 2023.
Article in English | MEDLINE | ID: mdl-37808105

ABSTRACT

Background: Filarial infections have been understudied in bats. Likewise, little is known about pathogens associated with the reproductive system in chiropterans. While semen quality is critical for reproductive success, semen-borne pathogens may contribute to reproductive failure. Methods: For the first time we performed electroejaculation and used computer-assisted semen analysis to provide baseline data on semen quality in a parti-coloured bat (Vespertilio murinus). Results: The semen quality values measured in the V. murinus male appeared high (semen concentration = 305.4 × 106/mL; progressive and motile sperm = 46.58 and 60.27%, respectively). As an incidental finding, however, microfilariae were observed in the bat semen examined. At necropsy, eight adult filarial worms, later genetically identified as Litomosa sp., were found in the peritoneal cavity, close to the stomach, of the same particoloured bat male dying as a result of dysmicrobia and haemorrhagic gastroenteritis in a wildlife rescue centre. Histopathology revealed microfilariae in the testicular connective tissue and the epidydimal connective and fat tissues. A PCR assay targeting cytochrome c oxidase subunit 1 confirmed that adult worms from the peritoneal cavity and testicular microfilariae were of the same filarial species. Mildly engorged argasid mite larvae attached to the bat skin proved negative for filarial DNA and the adult filarial worms proved negative for endosymbiont Wolbachia. Conclusion: While the standard filarial life cycle pattern involves a vertebrate definitive host and an invertebrate vector, represented by a blood-sucking ectoparasite, our finding suggests that microfilariae of this nematode species may also be semen-borne, with transmission intensity promoted by the polygynous mating system of vespertilionid bats in which an infected male mates with many females during the autumn swarming. Presence of microfilariae may be expected to decrease semen quality and transmission via this route may challenge the success of reproductive events in females after mating. Further investigation will be necessary to better understand the bat-parasite interaction and the life cycle of this filarial worm.

2.
Front Vet Sci ; 9: 978756, 2022.
Article in English | MEDLINE | ID: mdl-36157196

ABSTRACT

Heterothermy, as a temperature-dependent physiological continuum, may affect host-pathogen interactions through modulation of immune responses. Here, we evaluated proliferation and functional performance of a macrophage cell line established from the greater mouse-eared (Myotis myotis) bat at 8, 17.5, and 37°C to simulate body temperatures during hibernation, daily torpor and euthermia. Macrophages were also frozen to -20°C and then examined for their ability to proliferate in the immediate post-thaw period. We show that bat macrophages can proliferate at lower temperatures, though their growth rate is significantly slower than at 37°C. The cells differed in their shape, size and ability to attach to the plate surface at both lower temperatures, being spheroidal and free in suspension at 8°C and epithelial-like, spindle-shaped and/or spheroidal at 17.5°C. While phagocytosis at temperatures of 8 and 17.5°C amounted to 85.8 and 83.1% of the activity observed at 37°C, respectively, full phagocytic activity was restored within minutes of translocation into a higher temperature. Bat-derived macrophages were also able to withstand temperatures of -20°C in a cryoprotectant-free cultivation medium and, in the immediate post-thaw period, became viable and were able to proliferate. Our in vitro data enhance understanding of macrophage biology.

3.
BMC Zool ; 7(1): 18, 2022 Apr 02.
Article in English | MEDLINE | ID: mdl-37170295

ABSTRACT

BACKGROUND: The success of animal reproduction is impacted by a trade-off between energetic costs and mortality associated with immediate vs. future reproductive attempts. The reproductive strategies of European insectivorous bats differ from common mammalian standards due to the use of delayed fertilisation. Phenology of bat reproduction, including length of pregnancy, which may vary in the same species at different latitudes, between years at the same site or between individuals within a colony, is influenced by ecological conditions. To assess factors influencing the course of pregnancy, we evaluated levels of blood progesterone in 20 female common noctule bats Nyctalus noctula. The bats were individually tagged and randomly divided into two groups with different hibernation ending points (i.e. a control group vs. a treatment group with one-week longer hibernation). Following emergence from hibernation, the bats were kept in a wooden box at a stable temperature of 22 °C. RESULTS: The majority of females gave birth to a single neonate (65%), but one female aborted her pups 2 days before the first successful births of other females. Based on development of progesterone concentration, we were able to define a number of different reproduction strategies, i.e. females with single offspring or twins, and females with supposed resorption of one embryo (embryonic mortality after implantation of the developing fertilised egg). Progesterone levels were much higher in females with two embryos during the first part of gestation and after birth. Progesterone levels were at their highest mid-gestation, with no difference between females carrying one or two foetuses. Length of gestation differed significantly between the two groups, with the longer hibernation (treatment) group having a roughly two-day shorter gestation period. CONCLUSIONS: Female N. noctula are able to manipulate their litter size to balance immediate and future reproduction success. The estimated gestation length of approx. 49-days appears to be standard for N. noctula, with females optimising their thermoregulatory behaviour to keep the length of gestation as close to the standard as possible.

4.
Microorganisms ; 9(11)2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34835362

ABSTRACT

A total of 281 guano samples were collected from caves (N = 181) in eight European countries (Bulgaria, Czech Republic, France, Hungary, Italy, Romania, Slovakia and Slovenia) and attics in the Czech R. (N = 100). The correlation of detection of mycobacteria between Ziehl-Neelsen (ZN) microscopy and culture examination and qPCR was strong. ZN microscopy was positive in guano from caves (58.6%) more than double than positivity in guano from attics (21.0%; p < 0.01). From 89 mycobacterial isolates (73 isolates from cave guano and 16 isolates from attics' guano), 68 (76.4%) isolates of 19 sp., ssp. and complex were identified as members of three Groups (M. fortuitum, M.chelonae, and M. mucogenicum) and four complexes (M. avium, M. terrae, M.vaccae, and M.smegmatis). A total of 20 isolates (22.5%) belonged to risk group 1 (environmental saprophytes), 48 isolates (53.9%) belonged to risk group 2 (potential pathogens), and none of the isolates belonged to risk group 3 (obligatory pathogens). When comparing bat guano collected from caves and attics, differences (p < 0.01; Mann-Whitney test) were observed for the electrical conductivity, total carbon, total organic, and total inorganic carbon. No difference (p > 0.05; Mann-Whitney test) was found for pH and oxidation-reduction potential parameters.

5.
Transbound Emerg Dis ; 68(6): 3089-3095, 2021 Nov.
Article in English | MEDLINE | ID: mdl-33527732

ABSTRACT

Leptospirosis is a bacterial zoonotic infection of worldwide occurrence. Bats, like other mammalian reservoirs, may be long-term carriers that maintain endemicity of infection and shed viable leptospires in urine. Direct and/or indirect contact with these Leptospira shedders is the main risk factor as regards public health concern. However, knowledge about bat leptospirosis in the Palearctic Region, and in Europe in particular, is poor. We collected urine from 176 specimens of 11 bat species in the Czech Republic, Poland, Republic of Armenia and the Altai Region of Russia between 2014 and 2019. We extracted DNA from the urine samples to detect Leptospira spp. shedders using PCR amplification of the 16S rRNA and LipL32 genes. Four bat species (Barbastella barbastellus n = 1, Myotis bechsteinii n = 1, Myotis myotis n = 24 and Myotis nattereri n = 1) tested positive for Leptospira spp., with detected amplicons showing 100% genetic identity with pathogenic Leptospira interrogans. The site- and species-specific prevalence range was 0%-24.1% and 0%-20%, respectively. All bats sampled in the Republic of Armenia and Russia were negative. Given the circulation of pathogenic leptospires in strictly protected Palearctic bat species and their populations, non-invasive and non-lethal sampling of urine for molecular Leptospira spp. detection is recommended as a suitable surveillance and monitoring strategy. Moreover, our results should raise awareness of this potential disease risk among health professionals, veterinarians, chiropterologists and wildlife rescue workers handling bats, as well as speleologists and persons cleaning premises following bat infestation.


Subject(s)
Chiroptera , Leptospira , Leptospirosis , Animals , Leptospira/genetics , Leptospirosis/epidemiology , Leptospirosis/veterinary , Polymerase Chain Reaction/veterinary , RNA, Ribosomal, 16S/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...