Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Opt Express ; 32(8): 14252-14260, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38859376

ABSTRACT

We investigate a new method of coercive field engineering for periodic poling of RbKTiOPO4 (RKTP). By ion exchanging RKTP in a molten salt containing 7 mol% Ba(NO3)2 and 93 mol% KNO3 we achieve more than an order of magnitude difference in polarization switching time between the exchanged and non-exchanged regions. This method is used to fabricate periodic gratings of 2.92 µm in 1 mm thick bulk RKTP for second harmonic generation at 779 nm with a normalized conversion efficiency of 2%/Wcm. We show that the poled domain structures are stable at 300 °C, and that there is no bulk refractive index modification associated with the periodic ion exchange.

2.
Opt Express ; 32(2): 1728-1735, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38297718

ABSTRACT

We present a tunable (6.62-11.34 µm), singly-resonant, cascade optical parametric oscillator with intracavity pumping of BaGa2GeSe6 in the second stage and spectral narrowing realized by a Volume Bragg Grating acting on the signal wave of the first stage which serves as a pump for the second stage. The maximum energy achieved near 8 µm in the narrowband regime is 1.1 mJ at 100 Hz (spectral width: ∼20 cm-1, pulse duration: ∼7 ns). The overall conversion efficiency from 1 to 8 µm for broadband and narrowband operation is 4.0% and 3.1%, respectively, corresponding to quantum efficiencies of 31% and 23%.

3.
Opt Lett ; 48(24): 6484-6487, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38099779

ABSTRACT

We demonstrate a continuously tunable mid-infrared source that produces narrowband radiation at 1981 nm and 2145 nm based on a tunable Yb-based hybrid MOPA pump and a backward-wave optical parametric oscillator (BWOPO). The BWOPO employs a PPRKTP crystal with 580 nm domain periodicity. The BWOPO has a record-low oscillation threshold of 19.2 MW/cm2 and generates mJ level output with an overall efficiency exceeding 70%, reaching an average power of 5.65W at the repetition rate of 5 kHz. The system is mechanically robust and optical cavity-free, making it suitable for spectroscopic systems on mobile platforms. The mid-infrared signal frequency is tuned by pump tuning with a linear pump-to-signal frequency translation rate close to the predicted 1 to 1.001 Hz/Hz.

4.
Opt Express ; 31(15): 24320-24327, 2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37475262

ABSTRACT

A stable, narrow-bandwidth (274 MHz) backward wave optical parametric oscillator (BWOPO) generating mJ-level backward signal at 1885nm and forward idler at 2495 nm is presented. The BWOPO was pumped by a single-longitudinal mode, Q-switched Nd:YAG high-energy laser at 1064 nm. We show that multi-transversal mode pumping leads to the spectral broadening of the BWOPO backward signal and the generation of nanosecond pulses 2.7 times above the Fourier transform limit. We demonstrate over 100 GHz continuous tuning of the parametric output by adjusting the temperature of the BWOPO crystal, showcasing the significant role of thermal expansion in tuning performance. The BWOPO signal was used as a seed for a single-stage PPRKTP optical parametric amplifier (OPA) to boost the narrowband signal and idler energies to 20 mJ. This combination of mJ-level BWOPO seed with a single-stage PPRKTP OPA comprises a simple concept that would benefit long-range differential absorption lidar (DIAL) in the near and mid-infrared regions.

5.
Opt Lett ; 48(6): 1534-1537, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36946971

ABSTRACT

We demonstrate first-order quasi-phase-matched backward second-harmonic generation (BSHG) with an efficiency of 18.7%. This represents an increase by two orders of magnitude from earlier experiments employing higher-order quasi-phase-matching. The efficient BSHG is demonstrated in bulk periodically poled Rb:KTiOPO4 with a poling period of 317 nm. Using these structures, the frequency doubling in the backward direction is achieved for the fundamental wavelength of 2309 nm. Here we report on the experimental investigation of the BSHG properties such as spectral bandwidth, temperature tuning, and temperature bandwidth by employing broadband and narrowband fundamental wavelength sources. The BSHG properties are compared with those of co-propagating second harmonic generation to reveal the BSHG potential for novel applications that were proposed theoretically but have not been realized in practice so far.

6.
Opt Lett ; 47(5): 1105-1108, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35230302

ABSTRACT

A Nd:YVO4 laser operating at 1064 nm generating a stable mode-locked train of 10 ps-long dark pulses with a 211 MHz repetition rate is presented. The mode-locking relies on a periodic loss modulation produced by intra-cavity sum-frequency mixing with a synchronous bright-pulse train from a mode-locked femtosecond Yb:KYW laser at 1040 nm. A modulation depth of 90% was achieved for the dark pulses, confirmed by cross-correlation measurements. The ultrafast loss modulation injects power into the Nd:YVO4 laser cavity modes beyond the laser gain bandwidth. At proper laser cavity length, the detuning interaction of these modes with the lasing modes leads to the generation of periodic ultrafast transients at frequencies above 1.5 THz.

7.
Opt Lett ; 46(4): 741-744, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33577503

ABSTRACT

We demonstrate multi-cycle terahertz (MC-THz) generation in a 15.5 mm long periodically poled rubidium (Rb)-doped potassium titanyl phosphate (Rb:PPKTP) crystal with a poling period of 300 µm. By cryogenically cooling the crystal to 77 K, up to 0.72 µJ terahertz energy is obtained at a frequency of 0.5 THz with a 3 GHz bandwidth. A maximum internal optical-to-terahertz conversion efficiency of 0.16% is achieved, which is comparable with results achieved using periodically poled lithium niobate crystal. Neither photorefractive effects nor damage was observed with up to 900mJ/cm2, showing the great potential of Rb:PPKTP for multi-millijoule-level MC-THz generation.

8.
Opt Express ; 28(26): 38822-38830, 2020 Dec 21.
Article in English | MEDLINE | ID: mdl-33379442

ABSTRACT

An ion-exchange process has been developed for periodically poled Rb-doped KTiOPO4 (RKTP) which warrants high efficiency and low loss channel waveguides. The domain stability was investigated, and it was found that domain gratings with uncharged walls could stand the ion-exchange process without deterioration. 3.1 mW of blue second harmonic light was generated from 74 mW of radiation at 940.2 nm coupled into an 8 µm wide and 7 mm long waveguide, corresponding to a normalized conversion efficiency of 115%/Wcm2. Waveguides in PPRKTP open the possibility for stable operation at high optical powers, as well as generating entangled photons at low optical powers, and enable the investigation of novel nonlinear processes such as counter-propagating interactions in a waveguide format.

9.
Opt Lett ; 45(21): 6026-6029, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-33137060

ABSTRACT

We worked on a new scheme of quasi-phase matching (QPM) based on the negative first order of the spatial modulation of the sign of the second-order nonlinearity. Applying this scheme in the case of angular-QPM (AQPM) in a biaxial crystal reveals new directions of propagation for efficient parametric frequency conversion as well as "giant" spectral acceptances. The experimental validation is performed in a periodically poled rubidium-doped KTiOPO4 biaxial crystal. This new approach naturally extends to other periodically poled uniaxial crystals such as periodically poled LiNbO3.

10.
Opt Lett ; 44(12): 3066-3069, 2019 Jun 15.
Article in English | MEDLINE | ID: mdl-31199382

ABSTRACT

The frequency modulation transfer property of a backward-wave optical parametric oscillator (BWOPO) is investigated in the context of near-IR pulse compression. The maximum transferrable bandwidth from the pump to the forward wave in a BWOPO is determined by the group dispersion mismatch. In comparison, the third-order phase introduced in a single-grating compressor setup is more detrimental to achieve optimum compression of the BWOPO forward wave. Nevertheless, we demonstrate a 220 GHz bandwidth transfer from 800 nm to 1.4 µm, with a compression factor of 115, leading to near-IR pulses as short as 1.3 ps with µJ energy.

11.
Opt Express ; 27(8): 10602-10610, 2019 Apr 15.
Article in English | MEDLINE | ID: mdl-31052916

ABSTRACT

The strict momentum conservation constraints for backward-wave optical parametric oscillators (BWOPOs) gives an inherently narrowband backward-generated wave, even with broadband pumping. Unfortunately, the limited tuning range of this wave restricts potential applications. Here we demonstrate a method to circumvent this restriction and increase the tuning range by more than one order of magnitude. A linearly chirped pump modulation is transferred to the forward-generated BWOPO wave, which is then mixed with an identically chirped pump in a conventional optical parametric amplifier to obtain narrowband (38 GHz), broadly tunable, infrared radiation around 1.86 µm, with an output energy of 19 µJ.

12.
Opt Lett ; 43(17): 4276-4279, 2018 Sep 01.
Article in English | MEDLINE | ID: mdl-30160706

ABSTRACT

We report the first experimental validation of angular quasi-phase-matching (AQPM) theory in a biaxial crystal by performing second-harmonic generation (SHG) in the periodically-poled Rb-doped KTiOPO4 (PPRKTP) crystal cut as a sphere. Both AQPM and birefringence phase-matching (BPM) angles were measured thanks to a Kappa circle.

13.
Opt Lett ; 42(13): 2435-2438, 2017 Jul 01.
Article in English | MEDLINE | ID: mdl-28957253

ABSTRACT

A highly efficient mirrorless optical parametric oscillator (MOPO), pumped by narrowband nanosecond pulses at 1064 nm, is demonstrated. The MOPO is based on quasi-phase-matched parametric interaction of counter-propagating photons in 1-mm-thick periodically poled Rb-doped KTiOPO4 crystal with a period of 755 nm. It generates a co-propagating signal at 1740 nm and a counter-propagating idler at 2741 nm, achieving mJ-level output with a total signal-and-idler conversion efficiency of 47%. Both generated waves present narrow spectral bandwidths, thanks to the unique properties of the counter-propagating nonlinear interaction. The high conversion efficiency, inherently narrow spectral width, and simplicity of the optical setup make the MOPO an attractive alternative to conventional co-propagating optical parametric oscillators.

14.
Sci Rep ; 7(1): 8037, 2017 Aug 14.
Article in English | MEDLINE | ID: mdl-28808234

ABSTRACT

Mirrorless optical parametric oscillators (MOPOs) are very attractive parametric devices that rely on the nonlinear interaction of counter-propagating photons to inherently establish distributed feedback, without the use of external mirrors or surface coatings. These devices offer unique spectral and coherence properties that will benefit a large variety of applications ranging from spectroscopy to quantum communications. The major obstacle in exploiting their full potential is ascribed to the difficulty in engineering a nonlinear material in which the generation of counter-propagating waves can be phase matched. Here we present a reliable and consistent technique for fabrication of highly-efficient sub-micrometer periodically poled Rb-doped KTiOPO4. We experimentally demonstrate the first cascaded counter-propagating interactions in which the generated forward signal serves as a pump for a secondary MOPO process, reaching pump depletion larger than 60%. The cascaded process exemplifies the high efficiency of our nonlinear photonic structures. Our domain-engineering technique paves the way to realize counter-propagating schemes and devices that have been deemed unfeasible until now.

15.
Appl Opt ; 56(10): 2783-2786, 2017 Apr 01.
Article in English | MEDLINE | ID: mdl-28375241

ABSTRACT

An overall quantum conversion efficiency of 7.8% is achieved by intracavity mixing the signal and idler of a 1.064 µm pumped Rb:PPKTP optical parametric oscillator in BaGa4Se7. In this way, a pulse energy of ∼0.71 mJ is generated at ∼7 µm for a repetition rate of 100 Hz. Tuning of the mid-IR radiation is demonstrated by heating of the Rb:PPKTP crystal.

16.
Opt Express ; 25(2): 1142-1150, 2017 Jan 23.
Article in English | MEDLINE | ID: mdl-28157999

ABSTRACT

We demonstrate a monolithic frequency converter incorporating up to four tuning degrees of freedom, three temperature and one strain, allowing resonance of pump and generated wavelengths simultaneous with optimal phase-matching. With a Rb-doped periodically-poled potassium titanyl phosphate (KTP) implementation, we demonstrate efficient continuous-wave second harmonic generation from 795 to 397, with low-power efficiency of 72% and high-power slope efficiency of 4.5%. The measured performance shows good agreement with theoretical modeling of the device. We measure optical bistability effects, and show how they can be used to improve the stability of the output against pump frequency and amplitude variations.

17.
Opt Express ; 25(3): 2677-2686, 2017 Feb 06.
Article in English | MEDLINE | ID: mdl-29519109

ABSTRACT

Strongly enhanced backward stimulated polariton scattering (BSPS) is demonstrated in periodically-poled KTiOPO4 (KTP) crystals with a high power-conversion efficiency up to 70%. We study the physical mechanism of such counter-propagating parametric interaction with phonon-polaritons in χ(2) modulated structures. BSPS is a three-wave mixing that is distinguished from backward stimulated Raman scattering (BSRS), while a strong absorption at large polariton wave-vectors can still make BSPS display certain characteristics of BSRS such as self-compression of the Stokes pulse. We also compare BSPS with counter-propagating parametric oscillation in the near- and mid-infrared range, providing an estimation of the fabrication error margin to expect the outcome of their competition in the same device.

18.
Opt Express ; 24(23): 25964-25973, 2016 Nov 14.
Article in English | MEDLINE | ID: mdl-27857335

ABSTRACT

We report superior terahertz parametric generation from potassium titanyl phosphate (KTP) over congruent-grown lithium niobate (CLN) and lithium tantalate (CLT) in terms of parametric gain and laser damage resistance. Under the same pump and crystal configurations, the signal emerged first from KTP, 5% Mg-doped CLN, CLN, and then finally from CLT. The signal growth rate in KTP was comparable to that in 5%-Mg-doped CLN, but the signal power from KTP reached a much higher value after all the other crystals were damaged by the pump laser. We further demonstrate seeded terahertz parametric amplification in an edge-cut KTP at 5.74 THz. The THz parametric amplifier (TPA) employs a 17-mm long KTP gain crystal, pumped by a passively Q-switched pump laser at 1064 nm and seeded by a continuous-wave diode laser tuned to the signal wavelength at 1086.2 nm. With 5.8-mJ energy in a 520-ps pump pulse and 100-mW seed signal power, we measured 5-W peak-power THz output from the KTP TPA with 22% pump depletion. In comparison, we measured no detectable THz output power from a similar edge-cut CLN TPA under the same pump power, detection scheme, and crystal configuration, when tuning the seed laser wavelength to 1072.2 nm and attempting to generate a radiation at 2.1 THz.

19.
Opt Lett ; 41(12): 2791-4, 2016 Jun 15.
Article in English | MEDLINE | ID: mdl-27304290

ABSTRACT

A 1.064 µm pumped Rb:PPKTP optical parametric oscillator (OPO) generates mid-IR radiation by intracavity mixing the resonant signal and idler waves in AgGaSe2. The ∼6 ns pulses at ∼7 µm have an energy of 670 µJ at 100 Hz, equivalent to an average power of 67 mW. The overall quantum conversion efficiency from 1.064 µm amounts to 8%, and the power conversion efficiency is 1.2%.

20.
Opt Express ; 23(16): 20332-9, 2015 Aug 10.
Article in English | MEDLINE | ID: mdl-26367888

ABSTRACT

The temporal evolution of in situ second-harmonic generation was employed to study domain dynamics during periodic poling in Rb-doped KTP. With this method we investigated the influence of various poling parameters, including electric-field pulse shape, pulse magnitude, and number of pulses, on the quality of the QPM structure. It was found that the grating formation can be a sub-millisecond process and the benefits of using symmetric triangular electric-field pulse shape over square pulse shape in the single-pulse poling regime were demonstrated. Multiple-pulse poling with triangular pulses was shown to have a detrimental effect on the QPM structure quality, while multiple square pulses can provide additional flexibility to the structuring process.

SELECTION OF CITATIONS
SEARCH DETAIL
...