Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Ecol Evol ; 8(3): 400-410, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38200369

ABSTRACT

Mycorrhizae, a form of plant-fungal symbioses, mediate vegetation impacts on ecosystem functioning. Climatic effects on decomposition and soil quality are suggested to drive mycorrhizal distributions, with arbuscular mycorrhizal plants prevailing in low-latitude/high-soil-quality areas and ectomycorrhizal (EcM) plants in high-latitude/low-soil-quality areas. However, these generalizations, based on coarse-resolution data, obscure finer-scale variations and result in high uncertainties in the predicted distributions of mycorrhizal types and their drivers. Using data from 31 lowland tropical forests, both at a coarse scale (mean-plot-level data) and fine scale (20 × 20 metres from a subset of 16 sites), we demonstrate that the distribution and abundance of EcM-associated trees are independent of soil quality. Resource exchange differences among mycorrhizal partners, stemming from diverse evolutionary origins of mycorrhizal fungi, may decouple soil fertility from the advantage provided by mycorrhizal associations. Additionally, distinct historical biogeographies and diversification patterns have led to differences in forest composition and nutrient-acquisition strategies across three major tropical regions. Notably, Africa and Asia's lowland tropical forests have abundant EcM trees, whereas they are relatively scarce in lowland neotropical forests. A greater understanding of the functional biology of mycorrhizal symbiosis is required, especially in the lowland tropics, to overcome biases from assuming similarity to temperate and boreal regions.


Subject(s)
Mycorrhizae , Trees , Ecosystem , Soil , Nutrients
2.
PeerJ ; 11: e15500, 2023.
Article in English | MEDLINE | ID: mdl-37361043

ABSTRACT

Understanding the mechanisms driving community assembly has been a major focus of ecological research for nearly a century, yet little is known about these mechanisms in commensal communities, particularly with respect to their historical/evolutionary components. Here, we use a large-scale dataset of 4,440 vascular plant species to explore the relationship between the evolutionary distinctiveness (ED) (as measured by the 'species evolutionary history' (SEH)) of host species and the phylogenetic diversity (PD) of their associated epiphyte species. Although there was considerable variation across hosts and their associated epiphyte species, they were largely unrelated to host SEH. Our results mostly support the idea that the determinants of epiphyte colonization success might involve host characteristics that are unrelated to host SEH (e.g., architectural differences between hosts). While determinants of PD of epiphyte assemblages are poorly known, they do not appear to be related to the evolutionary history of host species. Instead, they might be better explained by neutral processes of colonization and extinction. However, the high level of phylogenetic signal in epiphyte PD (independent of SEH) suggests it might still be influenced by yet unrecognized evolutionary determinants. This study highlights how little is still known about the phylogenetic determinants of epiphyte communities.


Subject(s)
Biological Evolution , Tracheophyta , Phylogeny , Symbiosis , Host Specificity
3.
Glob Chang Biol ; 29(12): 3409-3420, 2023 06.
Article in English | MEDLINE | ID: mdl-36938951

ABSTRACT

Accurate estimates of forest biomass stocks and fluxes are needed to quantify global carbon budgets and assess the response of forests to climate change. However, most forest inventories consider tree mortality as the only aboveground biomass (AGB) loss without accounting for losses via damage to living trees: branchfall, trunk breakage, and wood decay. Here, we use ~151,000 annual records of tree survival and structural completeness to compare AGB loss via damage to living trees to total AGB loss (mortality + damage) in seven tropical forests widely distributed across environmental conditions. We find that 42% (3.62 Mg ha-1 year-1 ; 95% confidence interval [CI] 2.36-5.25) of total AGB loss (8.72 Mg ha-1 year-1 ; CI 5.57-12.86) is due to damage to living trees. Total AGB loss was highly variable among forests, but these differences were mainly caused by site variability in damage-related AGB losses rather than by mortality-related AGB losses. We show that conventional forest inventories overestimate stand-level AGB stocks by 4% (1%-17% range across forests) because assume structurally complete trees, underestimate total AGB loss by 29% (6%-57% range across forests) due to overlooked damage-related AGB losses, and overestimate AGB loss via mortality by 22% (7%-80% range across forests) because of the assumption that trees are undamaged before dying. Our results indicate that forest carbon fluxes are higher than previously thought. Damage on living trees is an underappreciated component of the forest carbon cycle that is likely to become even more important as the frequency and severity of forest disturbances increase.


Subject(s)
Trees , Tropical Climate , Biomass , Forests , Carbon
4.
Nat Plants ; 8(9): 984-985, 2022 09.
Article in English | MEDLINE | ID: mdl-35995833
5.
Glob Chang Biol ; 28(18): 5560-5574, 2022 09.
Article in English | MEDLINE | ID: mdl-35748712

ABSTRACT

Crown damage can account for over 23% of canopy biomass turnover in tropical forests and is a strong predictor of tree mortality; yet, it is not typically represented in vegetation models. We incorporate crown damage into the Functionally Assembled Terrestrial Ecosystem Simulator (FATES), to evaluate how lags between damage and tree recovery or death alter demographic rates and patterns of carbon turnover. We represent crown damage as a reduction in a tree's crown area and leaf and branch biomass, and allow associated variation in the ratio of aboveground to belowground plant tissue. We compare simulations with crown damage to simulations with equivalent instant increases in mortality and benchmark results against data from Barro Colorado Island (BCI), Panama. In FATES, crown damage causes decreases in growth rates that match observations from BCI. Crown damage leads to increases in carbon starvation mortality in FATES, but only in configurations with high root respiration and decreases in carbon storage following damage. Crown damage also alters competitive dynamics, as plant functional types that can recover from crown damage outcompete those that cannot. This is a first exploration of the trade-off between the additional complexity of the novel crown damage module and improved predictive capabilities. At BCI, a tropical forest that does not experience high levels of disturbance, both the crown damage simulations and simulations with equivalent increases in mortality does a reasonable job of capturing observations. The crown damage module provides functionality for exploring dynamics in forests with more extreme disturbances such as cyclones and for capturing the synergistic effects of disturbances that overlap in space and time.


Subject(s)
Ecosystem , Trees , Biomass , Carbon , Forests , Tropical Climate
6.
New Phytol ; 233(2): 705-721, 2022 01.
Article in English | MEDLINE | ID: mdl-34716605

ABSTRACT

The relative importance of tree mortality risk factors remains unknown, especially in diverse tropical forests where species may vary widely in their responses to particular conditions. We present a new framework for quantifying the importance of mortality risk factors and apply it to compare 19 risks on 31 203 trees (1977 species) in 14 one-year periods in six tropical forests. We defined a condition as a risk factor for a species if it was associated with at least a doubling of mortality rate in univariate analyses. For each risk, we estimated prevalence (frequency), lethality (difference in mortality between trees with and without the risk) and impact ('excess mortality' associated with the risk, relative to stand-level mortality). The most impactful risk factors were light limitation and crown/trunk loss; the most prevalent were light limitation and small size; the most lethal were leaf damage and wounds. Modes of death (standing, broken and uprooted) had limited links with previous conditions and mortality risk factors. We provide the first ranking of importance of tree-level mortality risk factors in tropical forests. Future research should focus on the links between these risks, their climatic drivers and the physiological processes to enable mechanistic predictions of future tree mortality.


Subject(s)
Trees , Tropical Climate , Forests , Risk Factors , Trees/physiology
7.
Ecology ; 98(10): 2538-2546, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28719081

ABSTRACT

Extreme climatic events affecting the Amazon region are expected to become more frequent under ongoing climate change. In this study, we assessed the responses to the 2010 drought of over 14,000 trees ≥10 cm dbh in a 25 ha lowland forest plot in the Colombian Amazon and how these responses varied among topographically defined habitats, with tree size, and with species wood density. Tree mortality was significantly higher during the 2010-2013 period immediately after the drought than in 2007-2010. The post-drought increase in mortality was stronger for trees located in valleys (+243%) than for those located on slopes (+67%) and ridges (+57%). Tree-based generalized linear mixed models showed a significant negative effect of species wood density on mortality and no effect of tree size. Despite the elevated post-drought mortality, aboveground biomass increased from 2007 to 2013 by 1.62 Mg ha-1  yr-1 (95% CI 0.80-2.43 Mg ha-1  yr-1 ). Biomass change varied among habitats, with no significant increase on the slopes (1.05, 95% CI -0.76 to 2.85 Mg ha-1  yr-1 ), a significant increase in the valleys (1.33, 95% CI 0.37-2.34 Mg ha-1  yr-1 ), and a strong increase on the ridges (2.79, 95% CI 1.20-4.21 Mg ha-1  yr-1 ). These results indicate a high carbon resilience of this forest to the 2010 drought due to habitat-associated and interspecific heterogeneity in responses including directional changes in functional composition driven by enhanced performance of drought-tolerant species that inhabit the drier ridges.


Subject(s)
Droughts , Forests , Biomass , Colombia , Ecosystem
SELECTION OF CITATIONS
SEARCH DETAIL
...