Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
J Biomed Res ; 34(5): 387-394, 2020 Jan 23.
Article in English | MEDLINE | ID: mdl-32611846

ABSTRACT

With the increasing immunological studies on camels due to the advantage of their single-chain antibodies for humanizations, it is demanding to develop an easy-to-handle evaluation method of their humoral immune response before proceeding with immunization of foreign antigens that may be toxic to camels. In this study, we quantitatively determined the expression levels of T-helper 2 (Th2) cytokines in peripheral blood lymphocytes obtained from Bactrian camels by real-time PCR. The recorded kinetic profiles resulting from the immunization of ovalbumin (OVA) indicated that after immunization, Th2 cytokines including interleukin (IL) families such as IL-4, IL-10, and IL-13 in the camels were up-regulated by a factor of 1.78, 3.15, and 1.22, respectively, which was validated by traditional enzyme-linked immunosorbent assay (ELISA) methods. Unlike ELISA which requires specific enzyme-labeled antibodies, this established method based on the minimal amount of blood samples holds an advantage in the preliminary evaluation of camel humoral immune response with desirable precision, which is meaningful for biomedical explorations of camel-derived antibodies.

2.
Biomater Sci ; 8(13): 3559-3573, 2020 Jul 07.
Article in English | MEDLINE | ID: mdl-32490444

ABSTRACT

Nanobodies are antigen binding variable domains of heavy-chain antibodies without light-chains, and these biomolecules occur naturally in the serum of Camelidae species. Nanobodies have a compact structure and low molecular weight when compared with antibodies, and are the smallest active antigen-binding fragments. Because of their remarkable stability and manipulable characteristics, nanobodies have been incorporated into biomaterials and used as molecular recognition and tracing agents, drug delivery systems, molecular imaging tools and disease therapeutics. This review summarizes recent progress in this field focusing on nanobodies as versatile biomolecules for biomedical applications.


Subject(s)
Biocompatible Materials/chemistry , Biomedical Research , Camelidae/immunology , Nanostructures/chemistry , Single-Domain Antibodies/chemistry , Single-Domain Antibodies/immunology , Animals , Antigens/chemistry , Antigens/immunology , Camelidae/blood
3.
Commun Biol ; 3(1): 1, 2020 01 07.
Article in English | MEDLINE | ID: mdl-31925316

ABSTRACT

The domestic Bactrian camels were treated as one of the principal means of locomotion between the eastern and western cultures in history. However, whether they originated from East Asia or Central Asia remains elusive. To address this question, we perform whole-genome sequencing of 128 camels across Asia. The extant wild and domestic Bactrian camels show remarkable genetic divergence, as they were split from dromedaries. The wild Bactrian camels also contribute little to the ancestry of domestic ones, although they share close habitat in East Asia. Interestingly, among the domestic Bactrian camels, those from Iran exhibit the largest genetic distance and the earliest split from all others in the phylogeny, despite evident admixture between domestic Bactrian camels and dromedaries living in Central Asia. Taken together, our study support the Central Asian origin of domestic Bactrian camels, which were then immigrated eastward to Mongolia where native wild Bactrian camels inhabit.


Subject(s)
Camelus/classification , Camelus/genetics , Genome , Genomics , Animal Migration , Animals , Asia , Evolution, Molecular , Genetic Variation , Genetics, Population , Genomics/methods , Phylogeny , Polymorphism, Single Nucleotide , Whole Genome Sequencing
4.
J Biomed Res ; 34(1): 54-66, 2019 Aug 30.
Article in English | MEDLINE | ID: mdl-35081683

ABSTRACT

The aim of this study was to prepare camel serum albumin (CSA) nanoparticles using a self-assembly strategy to co-immobilize curcumin (CCM) and doxorubicin (Dox) which was in favor of combined chemotherapy and biomedical applications of bactrian ( Camelus bactrianus) CSA. The constructed CSA nanoparticles (CSA-NPs) with the size around 200 nm displayed a high degree of polydispersity and further encapsulation of CCM and Dox caused no apparent morphological changes to the nanocomposite (CCM/Dox CSA-NPs). The synergistic cytotoxic effect of CCM and Dox on cancer cell A549 was observed with the calculated combination index less than 1.0. Moreover, the release kinetic profile of encapsulated drugs showed a concentration dependence of glutathione (GSH) originating from the GSH used in nanoparticle formation to break the intramolecular disulfide bonds. In vitro cytotoxicity evaluations also revealed that CCM/Dox CSA-NPs showed higher cytotoxicity than that of single drug loaded CSA-NPs, which was also validated by high content screen assay. Taken together, the CCM/Dox CSA-NPs with redox-responsive attributes provided an integrated protein-based combinational drug-delivery matrix to exert synergistic effects.

SELECTION OF CITATIONS
SEARCH DETAIL