Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Behav Pharmacol ; 35(1): 26-35, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38085651

ABSTRACT

Chronic exposure to cocaine is known to have profound effects on the brain, leading to the dysregulation of inflammatory signalling pathways, the activation of microglia, and the manifestation of cognitive and motivational behavioural impairments. The endocannabinoid system has emerged as a potential mediator of cocaine's deleterious effects. In this study, we sought to investigate the therapeutic potential of the cannabinoid CB2 receptor agonist, JWH-133, in mitigating cocaine-induced inflammation and associated motivational behavioural alterations in an in vivo model. Our research uncovered compelling evidence that JWH-133, a selective CB2 receptor agonist, exerts a significant dampening effect on the reinstatement of cocaine-induced conditioned place preference. This effect was accompanied by notable changes in the neurobiological landscape. Specifically, JWH-133 administration was found to upregulate Δ-FOSB expression in the nucleus accumbens (Nac), elevate CX3CL1 levels in both the ventral tegmental area and prefrontal cortex (PFC), and concurrently reduce IL-1ß expression in the PFC and NAc among cocaine-treated animals. These findings highlight the modulatory role of CB2 cannabinoid receptor activation in altering the reward-seeking behaviour induced by cocaine. Moreover, they shed light on the intricate interplay between the endocannabinoid system and cocaine-induced neurobiological changes, paving the way for potential therapeutic interventions targeting CB2 receptors in the context of cocaine addiction and associated behavioural deficits.


Subject(s)
Cannabinoids , Cocaine , Mice , Animals , Endocannabinoids/metabolism , Receptor, Cannabinoid, CB2 , Cocaine/pharmacology , Cocaine/metabolism , Cannabinoids/pharmacology , Nucleus Accumbens/metabolism , Cannabinoid Receptor Agonists/pharmacology
2.
Pharmacol Biochem Behav ; 211: 173290, 2021 12.
Article in English | MEDLINE | ID: mdl-34662589

ABSTRACT

Alcohol abuse is a widespread cause of aggressive and impulsive behaviors that impact the users as well as their entourage. However, only a few medications are effective. Recently, cannabidiol has been reported to improve mood disorders and recovery from substance abuse, yet the psychopharmacologic effects of cannabidiol in ethanol-induced drug reward and aggressivity remain unexplored. In the present study, we investigated the effects of cannabidiol on ethanol-induced place preference and aggressivity in individually and group-housed male rats using the conditioned place preference test, and intruder evoc aggression test, respectively. The obtained results showed that ethanol significantly increased locomotor activity, induced conditioned place preference in all animals, and, specifically, increased aggressivity in individually housed rats. These behavioural impairments induced by ethanol were associated with decreased glucocorticoid and mineralocorticoid receptors transcription in the prefrontal cortex. Notwithstanding, cannabidiol at a dose of 10 mg/kg significantly inhibited Et-OH-induced place preference in group-housed, but not in individually housed rats, and markedly inhibited the aggressive behaviour. These findings suggest that ethanol-induced behavioural impairments are dependent on the housing condition that may affect corticosterone receptors expression and subsequently the animal responsivity to cannabidiol treatment.


Subject(s)
Aggression/drug effects , Cannabidiol/pharmacology , Conditioning, Classical/drug effects , Ethanol/pharmacology , Animals , Behavior, Animal/drug effects , Housing, Animal , Locomotion/drug effects , Male , Prefrontal Cortex/metabolism , Rats , Rats, Wistar , Reward
3.
Neurobiol Dis ; 136: 104701, 2020 03.
Article in English | MEDLINE | ID: mdl-31837421

ABSTRACT

HIV-associated neurocognitive impairments (HANI) are a spectrum of neurological disorders due to the effects of HIV-1 on the central nervous system (CNS). The HIV-1 subtypes; HIV-1 subtype B (HIV-1B) and HIV-1 subtype C (HIV-1C) are responsible for the highest prevalence of HANI and HIV infections respectively. The HIV transactivator of transcription (Tat) protein is a major contributor to the neuropathogenesis of HIV. The effects of the Tat protein on cells of the CNS is determined by the subtype-associated amino acid sequence variations. The extent to which the sequence variation between Tat-subtypes contribute to underlying mechanisms and neurological outcomes are not clear. In this review of the literature, we discuss how amino acid variations between HIV-1B Tat (TatB) and HIV-1C Tat (TatC) proteins contribute to the potential underlying neurobiological mechanisms of HANI. Tat-C is considered to be a more effective transactivator, whereas Tat-B may exert increased neurovirulence, including neuronal apoptosis, monocyte infiltration into the brain, (neuro)inflammation, oxidative stress and blood-brain barrier damage. These findings support the premise that Tat variants from different HIV-1 subtypes may direct neurovirulence and neurological outcomes in HANI.


Subject(s)
HIV Infections/genetics , HIV-1/genetics , Neurocognitive Disorders/genetics , tat Gene Products, Human Immunodeficiency Virus/genetics , Amino Acid Sequence , HIV Infections/epidemiology , HIV Infections/metabolism , HIV-1/metabolism , Humans , Inflammation Mediators/metabolism , Neurocognitive Disorders/epidemiology , Neurocognitive Disorders/metabolism , Transcription, Genetic/genetics , tat Gene Products, Human Immunodeficiency Virus/metabolism
4.
J Chem Neuroanat ; 94: 86-92, 2018 12.
Article in English | MEDLINE | ID: mdl-30336207

ABSTRACT

The use of combination antiretroviral therapy (cART) has been successful in suppressing HIV-1 replication and restoring peripheral immune functioning in HIV-infected individuals. Despite these advances in the management of HIV, neurocognitive impairments continue to be diagnosed in HIV-infected patients on treatment, even when the viral load is low. Of interest is the observation that deficiencies in brain function in these individuals are marked by a persistent presence of neuroinflammation. Therefore, in this study we investigated whether long-term exposure to ART could contribute to neuroinflammation. Mice were subsequently administered a daily single dose of either Tenofovir disoproxil fumarate or Nevirapine orally for 8 weeks. After treatment, hippocampal tissue was collected from the brains of drug-treated and control mice and the levels of interleukin-1ß (IL-1ß), tumor necrosis factor-α (TNF-α) and brain-derived neurotrophic factor (BDNF) determined. Our results showed that administration of Tenofovir disoproxil fumarate and Nevirapine induced astrogliosis and up-regulated IL-1ß and TNF-α. In addition, we found that Nevirapine reduced the expression of BDNF. Together these results suggest that Nevirapine promotes inflammatory and reduces neuroprotective processes in the hippocampus of mice. Our findings therefore highlight the potential of ART to be harmful to the brain and as such these drugs may contribute to the development of HIV-associated neurocognitive disorder (HAND).


Subject(s)
Anti-Retroviral Agents/administration & dosage , Encephalitis/chemically induced , Hippocampus/drug effects , Neuronal Plasticity/drug effects , Nevirapine/administration & dosage , Tenofovir/administration & dosage , Animals , Anti-Retroviral Agents/adverse effects , Brain-Derived Neurotrophic Factor/metabolism , Encephalitis/metabolism , Encephalitis/pathology , Hippocampus/metabolism , Hippocampus/pathology , Interleukin-1beta/metabolism , Mice , Nevirapine/adverse effects , Tenofovir/adverse effects , Tumor Necrosis Factor-alpha/metabolism , Up-Regulation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...