Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Leukemia ; 37(5): 988-1005, 2023 05.
Article in English | MEDLINE | ID: mdl-37019990

ABSTRACT

Chromosomal rearrangements of the human KMT2A/MLL gene are associated with de novo as well as therapy-induced infant, pediatric, and adult acute leukemias. Here, we present the data obtained from 3401 acute leukemia patients that have been analyzed between 2003 and 2022. Genomic breakpoints within the KMT2A gene and the involved translocation partner genes (TPGs) and KMT2A-partial tandem duplications (PTDs) were determined. Including the published data from the literature, a total of 107 in-frame KMT2A gene fusions have been identified so far. Further 16 rearrangements were out-of-frame fusions, 18 patients had no partner gene fused to 5'-KMT2A, two patients had a 5'-KMT2A deletion, and one ETV6::RUNX1 patient had an KMT2A insertion at the breakpoint. The seven most frequent TPGs and PTDs account for more than 90% of all recombinations of the KMT2A, 37 occur recurrently and 63 were identified so far only once. This study provides a comprehensive analysis of the KMT2A recombinome in acute leukemia patients. Besides the scientific gain of information, genomic breakpoint sequences of these patients were used to monitor minimal residual disease (MRD). Thus, this work may be directly translated from the bench to the bedside of patients and meet the clinical needs to improve patient survival.


Subject(s)
Histone-Lysine N-Methyltransferase , Leukemia, Myeloid, Acute , Myeloid-Lymphoid Leukemia Protein , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Infant , Child, Preschool , Child , Adolescent , Adult , Middle Aged , Aged , Leukemia, Myeloid, Acute/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Histone-Lysine N-Methyltransferase/genetics , Myeloid-Lymphoid Leukemia Protein/genetics , Gene Fusion
2.
Eur J Cancer ; 160: 72-79, 2022 01.
Article in English | MEDLINE | ID: mdl-34785111

ABSTRACT

BACKGROUND: The outcome of infants with KMT2A-germline acute lymphoblastic leukaemia (ALL) is superior to that of infants with KMT2A-rearranged ALL but has been inferior to non-infant ALL patients. Here, we describe the outcome and prognostic factors for 167 infants with KMT2A-germline ALL enrolled in the Interfant-06 study. METHODS: Univariate analysis on prognostic factors (age, white blood cell count at diagnosis, prednisolone response and CD10 expression) was performed on KMT2A-germline infants in complete remission at the end of induction (EOI; n = 163). Bone marrow minimal residual disease (MRD) was measured in 73 patients by real-time quantitative polymerase chain reaction at various time points (EOI, n = 68; end of consolidation, n = 56; and before OCTADAD, n = 57). MRD results were classified as negative, intermediate (<5∗10-4), and high (≥5∗10-4). RESULTS: The 6-year event-free and overall survival was 73.9% (standard error [SE] = 3.6) and 87.2% (SE = 2.7). Relapses occurred early, within 36 months from diagnosis in 28 of 31 (90%) infants. Treatment-related mortality was 3.6%. Age <6 months was a favourable prognostic factor with a 6-year disease-free survival (DFS) of 91% (SE = 9.0) compared with 71.7% (SE = 4.2) in infants >6 months of age (P = 0.04). Patients with high EOI MRD ≥5 × 10-4 had a worse outcome (6-year DFS 61.4% [SE = 12.4], n = 16), compared with patients with undetectable EOI MRD (6-year DFS 87.9% [SE = 6.6], n = 28) or intermediate EOI MRD <5 × 10-4 (6-year DFS 76.4% [SE = 11.3], n = 24; P = 0.02). CONCLUSION: We conclude that young age at diagnosis and low EOI MRD seem favourable prognostic factors in infants with KMT2A-germline ALL and should be considered for risk stratification in future clinical trials.


Subject(s)
Neoplasm, Residual/etiology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/complications , Female , Germ Cells , Humans , Infant , Male , Neoplasm, Residual/pathology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/mortality , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Prognosis , Survival Analysis , Treatment Outcome
4.
Leukemia ; 33(8): 1910-1922, 2019 08.
Article in English | MEDLINE | ID: mdl-30858550

ABSTRACT

Minimal residual disease (MRD) is a powerful prognostic factor in acute lymphoblastic leukemia (ALL) and is used for patient stratification and treatment decisions, but its precise role in Philadelphia chromosome positive ALL is less clear. This uncertainty results largely from methodological differences relating to the use of real-time quantitative PCR (qRT-PCR) to measure BCR-ABL1 transcript levels for MRD analysis. We here describe the first results by the EURO-MRD consortium on standardization of qRT-PCR for the e1a2 BCR-ABL1 transcript in Ph + ALL, designed to overcome the lack of standardisation of laboratory procedures and data interpretation. Standardised use of EAC primer/probe sets and of centrally prepared plasmid standards had the greatest impact on reducing interlaboratory variability. In QC1 the proportion of analyses with BCR-ABL1/ABL1 ratios within half a log difference were 40/67 (60%) and 52/67 (78%) at 10-3 and 36/67 (53%) and 53/67 (79%) at 10-4BCR-ABL1/ABL1. Standardized RNA extraction, cDNA synthesis and cycler platforms did not improve results further, whereas stringent application of technical criteria for assay quality and uniform criteria for data interpretation and reporting were essential. We provide detailed laboratory recommendations for the standardized MRD analysis in routine diagnostic settings and in multicenter clinical trials for Ph + ALL.


Subject(s)
Fusion Proteins, bcr-abl/genetics , Philadelphia Chromosome , Practice Guidelines as Topic , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Real-Time Polymerase Chain Reaction/methods , Consensus , Humans , Neoplasm, Residual , RNA, Messenger/analysis
5.
Leukemia ; 32(2): 273-284, 2018 02.
Article in English | MEDLINE | ID: mdl-28701730

ABSTRACT

Chromosomal rearrangements of the human MLL/KMT2A gene are associated with infant, pediatric, adult and therapy-induced acute leukemias. Here we present the data obtained from 2345 acute leukemia patients. Genomic breakpoints within the MLL gene and the involved translocation partner genes (TPGs) were determined and 11 novel TPGs were identified. Thus, a total of 135 different MLL rearrangements have been identified so far, of which 94 TPGs are now characterized at the molecular level. In all, 35 out of these 94 TPGs occur recurrently, but only 9 specific gene fusions account for more than 90% of all illegitimate recombinations of the MLL gene. We observed an age-dependent breakpoint shift with breakpoints localizing within MLL intron 11 associated with acute lymphoblastic leukemia and younger patients, while breakpoints in MLL intron 9 predominate in AML or older patients. The molecular characterization of MLL breakpoints suggests different etiologies in the different age groups and allows the correlation of functional domains of the MLL gene with clinical outcome. This study provides a comprehensive analysis of the MLL recombinome in acute leukemia and demonstrates that the establishment of patient-specific chromosomal fusion sites allows the design of specific PCR primers for minimal residual disease analyses for all patients.


Subject(s)
Histone-Lysine N-Methyltransferase/genetics , Leukemia, Myeloid, Acute/genetics , Myeloid-Lymphoid Leukemia Protein/genetics , Adult , Child , Chromosome Aberrations , Chromosome Breakage , Female , Gene Rearrangement/genetics , Humans , Infant , Male , Oncogene Proteins, Fusion/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Translocation, Genetic/genetics
6.
Oncogene ; 36(43): 5985-5994, 2017 10 26.
Article in English | MEDLINE | ID: mdl-28650474

ABSTRACT

Leukemias harboring the ETV6-ABL1 fusion represent a rare subset of hematological malignancies with unfavorable outcomes. The constitutively active chimeric Etv6-Abl1 tyrosine kinase can be specifically inhibited by tyrosine kinase inhibitors (TKIs). Although TKIs represent an important therapeutic tool, so far, the mechanism underlying the potential TKI resistance in ETV6-ABL1-positive malignancies has not been studied in detail. To address this issue, we established a TKI-resistant ETV6-ABL1-positive leukemic cell line through long-term exposure to imatinib. ETV6-ABL1-dependent mechanisms (including fusion gene/protein mutation, amplification, enhanced expression or phosphorylation) and increased TKI efflux were excluded as potential causes of resistance. We showed that TKI effectively inhibited the Etv6-Abl1 kinase activity in resistant cells, and using short hairpin RNA (shRNA)-mediated silencing, we confirmed that the resistant cells became independent from the ETV6-ABL1 oncogene. Through analysis of the genomic and proteomic profiles of resistant cells, we identified an acquired mutation in the GNB1 gene, K89M, as the most likely cause of the resistance. We showed that cells harboring mutated GNB1 were capable of restoring signaling through the phosphoinositide-3-kinase (PI3K)/Akt/mTOR and mitogen-activated protein kinase (MAPK) pathways, whose activation is inhibited by TKI. This alternative GNB1K89M-mediated pro-survival signaling rendered ETV6-ABL1-positive leukemic cells resistant to TKI therapy. The mechanism of TKI resistance is independent of the targeted chimeric kinase and thus is potentially relevant not only to ETV6-ABL1-positive leukemias but also to a wider spectrum of malignancies treated by kinase inhibitors.


Subject(s)
Drug Resistance, Neoplasm/drug effects , GTP-Binding Protein beta Subunits/genetics , Leukemia/drug therapy , Oncogene Proteins, Fusion/genetics , Protein-Tyrosine Kinases/genetics , Cell Line, Tumor , Humans , Imatinib Mesylate/administration & dosage , Leukemia/genetics , Leukemia/pathology , Mutation , Protein Kinase Inhibitors/administration & dosage , RNA, Small Interfering/genetics , Signal Transduction/drug effects
7.
Bone Marrow Transplant ; 52(7): 962-968, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28244980

ABSTRACT

Minimal residual disease (MRD) monitoring via quantitative PCR (qPCR) detection of Ag receptor gene rearrangements has been the most sensitive method for predicting prognosis and making post-transplant treatment decisions for patients with ALL. Despite the broad clinical usefulness and standardization of this method, we and others have repeatedly reported the possibility of false-positive MRD results caused by massive B-lymphocyte regeneration after stem cell transplantation (SCT). Next-generation sequencing (NGS) enables precise and sensitive detection of multiple Ag receptor rearrangements, thus providing a more specific readout compared to qPCR. We investigated two cohorts of children with ALL who underwent SCT (30 patients and 228 samples). The first cohort consisted of 17 patients who remained in long-term CR after SCT despite having low MRD positivity (<0.01%) at least once during post-SCT monitoring using qPCR. Only one of 27 qPCR-positive samples was confirmed to be positive by NGS. Conversely, 10 of 15 samples with low qPCR-detected MRD positivity from 13 patients who subsequently relapsed were also confirmed to be positive by NGS (P=0.002). These data show that NGS has a better specificity in post-SCT ALL management and indicate that treatment interventions aimed at reverting impending relapse should not be based on qPCR only.


Subject(s)
Hematopoietic Stem Cell Transplantation , High-Throughput Nucleotide Sequencing , Polymerase Chain Reaction , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Adolescent , Child , Child, Preschool , False Positive Reactions , Female , Humans , Male , Neoplasm, Residual , Precursor Cell Lymphoblastic Leukemia-Lymphoma/blood , Precursor Cell Lymphoblastic Leukemia-Lymphoma/diagnosis , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy , Prognosis
9.
Leukemia ; 28(3): 609-20, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24270736

ABSTRACT

Switches from the lymphoid to myeloid lineage during B-cell precursor acute lymphoblastic leukemia (BCP-ALL) treatment are considered rare and thus far have been detected in MLL-rearranged leukemia. Here, we describe a novel BCP-ALL subset, switching BCP-ALL or swALL, which demonstrated monocytosis early during treatment. Despite their monocytic phenotype, 'monocytoids' share immunoreceptor gene rearrangements with leukemic B lymphoblasts. All swALLs demonstrated BCP-ALL with CD2 positivity and no MLL alterations, and the proportion of swALLs cases among BCP-ALLs was unexpectedly high (4%). The upregulation of CEBPα and demethylation of the CEBPA gene were significant in blasts at diagnosis, prior to the time when most of the switching occurs. Intermediate stages between CD14(neg)CD19(pos)CD34(pos) B lymphoblasts and CD14(pos)CD19(neg)CD34(neg) 'monocytoids' were detected, and changes in the expression of PAX5, PU1, M-CSFR, GM-CSFR and other genes accompanied the switch. Alterations in the Ikaros and ERG genes were more frequent in swALL patients; however, both were altered in only a minority of swALLs. Moreover, switching could be recapitulated in vitro and in mouse xenografts. Although children with swALL respond slowly to initial therapy, risk-based ALL therapy appears the treatment of choice for swALL. SwALL shows that transdifferentiating into monocytic lineage is specifically associated with CEBPα changes and CD2 expression.


Subject(s)
CD2 Antigens/immunology , Monocytes/pathology , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/immunology , Adolescent , Cell Lineage , Child , Child, Preschool , Cohort Studies , Female , Humans , Immunophenotyping , Male , Multiplex Polymerase Chain Reaction , Neoplasm, Residual , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Prognosis
11.
Leukemia ; 27(11): 2165-76, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23628958

ABSTRACT

Chromosomal rearrangements of the human MLL (mixed lineage leukemia) gene are associated with high-risk infant, pediatric, adult and therapy-induced acute leukemias. We used long-distance inverse-polymerase chain reaction to characterize the chromosomal rearrangement of individual acute leukemia patients. We present data of the molecular characterization of 1590 MLL-rearranged biopsy samples obtained from acute leukemia patients. The precise localization of genomic breakpoints within the MLL gene and the involved translocation partner genes (TPGs) were determined and novel TPGs identified. All patients were classified according to their gender (852 females and 745 males), age at diagnosis (558 infant, 416 pediatric and 616 adult leukemia patients) and other clinical criteria. Combined data of our study and recently published data revealed a total of 121 different MLL rearrangements, of which 79 TPGs are now characterized at the molecular level. However, only seven rearrangements seem to be predominantly associated with illegitimate recombinations of the MLL gene (≈ 90%): AFF1/AF4, MLLT3/AF9, MLLT1/ENL, MLLT10/AF10, ELL, partial tandem duplications (MLL PTDs) and MLLT4/AF6, respectively. The MLL breakpoint distributions for all clinical relevant subtypes (gender, disease type, age at diagnosis, reciprocal, complex and therapy-induced translocations) are presented. Finally, we present the extending network of reciprocal MLL fusions deriving from complex rearrangements.


Subject(s)
Chromosome Breakage , Gene Rearrangement , Leukemia/genetics , Myeloid-Lymphoid Leukemia Protein/genetics , Oncogene Proteins, Fusion/genetics , Translocation, Genetic/genetics , Acute Disease , Adolescent , Adult , Age Factors , Aged , Aged, 80 and over , Animals , Child , Child, Preschool , Female , Histone-Lysine N-Methyltransferase , Humans , Infant , Infant, Newborn , Leukemia/classification , Male , Mice , Middle Aged , Polymerase Chain Reaction , Prognosis , Young Adult
12.
Leukemia ; 23(8): 1490-9, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19262598

ABSTRACT

Chromosomal rearrangements of the human MLL gene are associated with high-risk pediatric, adult and therapy-associated acute leukemias. These patients need to be identified, treated appropriately and minimal residual disease was monitored by quantitative PCR techniques. Genomic DNA was isolated from individual acute leukemia patients to identify and characterize chromosomal rearrangements involving the human MLL gene. A total of 760 MLL-rearranged biopsy samples obtained from 384 pediatric and 376 adult leukemia patients were characterized at the molecular level. The distribution of MLL breakpoints for clinical subtypes (acute lymphoblastic leukemia, acute myeloid leukemia, pediatric and adult) and fused translocation partner genes (TPGs) will be presented, including novel MLL fusion genes. Combined data of our study and recently published data revealed 104 different MLL rearrangements of which 64 TPGs are now characterized on the molecular level. Nine TPGs seem to be predominantly involved in genetic recombinations of MLL: AFF1/AF4, MLLT3/AF9, MLLT1/ENL, MLLT10/AF10, MLLT4/AF6, ELL, EPS15/AF1P, MLLT6/AF17 and SEPT6, respectively. Moreover, we describe for the first time the genetic network of reciprocal MLL gene fusions deriving from complex rearrangements.


Subject(s)
Leukemia/genetics , Myeloid-Lymphoid Leukemia Protein/genetics , Neoplasm Proteins/genetics , Oncogene Proteins, Fusion/genetics , Recombination, Genetic , Translocation, Genetic , Acute Disease , Adult , Biopsy , Bone Marrow/chemistry , Bone Marrow/pathology , Child , Chromosome Breakage , Chromosomes, Human, Pair 11/genetics , Chromosomes, Human, Pair 11/ultrastructure , Computational Biology , DNA, Neoplasm/blood , DNA, Neoplasm/genetics , Gene Duplication , Histone-Lysine N-Methyltransferase , Humans , Polymerase Chain Reaction
13.
Leukemia ; 23(5): 944-51, 2009 May.
Article in English | MEDLINE | ID: mdl-19158828

ABSTRACT

Minimal residual disease (MRD) monitoring is an essential tool for risk group stratification in current treatment protocols for childhood acute lymphoblastic leukaemia (ALL). Although quantitative detection of clonal immunoglobulin (Ig) and T-cell receptor (TCR) gene rearrangements is currently considered to be the standard method, leukaemia fusion genes provide other possible targets for MRD follow-up, as already demonstrated in TEL/AML1-positive ALLs. We analysed and compared MRD levels quantified by BCR/ABL transcript detection and by the standard Ig/TCR-based method in 218 bone marrow specimens from 17 children with BCR/ABL-positive ALL. We found only a limited overall correlation of MRD levels as assessed by the two methods (correlation coefficient R(2)=0.64). The correlation varied among patients from excellent (R(2)=0.99) to very poor (R(2)=0.17). Despite identical sensitivity of the approaches, 20% of the samples were negative by the Ig/TCR approach whereas positive by the BCR/ABL method. We show that multilineage involvement is at least partly responsible for the discrepancy. Moreover, our data demonstrate that BCR/ABL monitoring enables better and earlier prediction of relapse compared to the standard Ig/TCR methodology. We conclude that BCR/ABL-based MRD monitoring of childhood ALL is a clinically relevant tool and should be performed in parallel with the standard Ig/TCR follow-up.


Subject(s)
Fusion Proteins, bcr-abl/genetics , Neoplasm Recurrence, Local/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Adolescent , Cells, Cultured , Child , Child, Preschool , Female , Gene Rearrangement, T-Lymphocyte/genetics , Genes, Immunoglobulin/genetics , Humans , Male , Neoplasm, Residual/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/classification , Precursor Cells, B-Lymphoid/metabolism , Precursor Cells, B-Lymphoid/pathology , Prognosis , RNA, Messenger/genetics , RNA, Messenger/metabolism , Remission Induction , Retrospective Studies , Reverse Transcriptase Polymerase Chain Reaction
15.
Leukemia ; 21(7): 1431-5, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17460701

ABSTRACT

Data on secondary acute lymphoblastic leukaemia (sALL) following ALL treatment are very rare. However, the incidence might be underestimated as sALLs without a significant lineage shift might automatically be diagnosed as relapses. Examination of immunoglobulin and T-cell receptor gene rearrangements brought a new tool that can help in discrimination between relapse and sALL. We focused on the recurrences of childhood ALL to discover the real frequency of the sALL after ALL treatment. We compared clonal markers in matched presentation and recurrence samples of 366 patients treated according to the Berlin-Frankfurt-Munster (BFM)-based protocols. We found two cases of sALL and another three, where the recurrence is suspicious of being sALL rather than relapse. Our proposal for the 'secondary ALL after ALL' diagnostic criteria is as follows: (A) No clonal relationship between diagnosis and recurrence; (B) significant immunophenotypic shift--significant cytogenetic shift--gain/loss of a fusion gene. For the sALL (A) plus at least one (B) criterion should be fulfilled. With these criteria, the estimated frequency of the sALL after ALL is according to our data 0.5-1.5% of ALL recurrences on BFM-based protocols. Finally, we propose a treatment strategy for the patients with secondary disease.


Subject(s)
Molecular Diagnostic Techniques/methods , Neoplasms, Second Primary/diagnosis , Precursor Cell Lymphoblastic Leukemia-Lymphoma/diagnosis , Antineoplastic Agents/adverse effects , Child, Preschool , Diagnosis, Differential , Female , Gene Rearrangement, T-Lymphocyte , Genes, Immunoglobulin , Humans , Immunophenotyping , Incidence , Male , Neoplasms, Second Primary/chemically induced , Precursor Cell Lymphoblastic Leukemia-Lymphoma/chemically induced , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Recurrence
16.
Leukemia ; 20(5): 777-84, 2006 May.
Article in English | MEDLINE | ID: mdl-16511515

ABSTRACT

Chromosomal rearrangements of the human MLL gene are a hallmark for aggressive (high-risk) pediatric, adult and therapy-associated acute leukemias. These patients need to be identified in order to subject these patients to appropriate therapy regimen. A recently developed long-distance inverse PCR method was applied to genomic DNA isolated from individual acute leukemia patients in order to identify chromosomal rearrangements of the human MLL gene. We present data of the molecular characterization of 414 samples obtained from 272 pediatric and 142 adult leukemia patients. The precise localization of genomic breakpoints within the MLL gene and the involved translocation partner genes (TPGs) was determined and several new TPGs were identified. The combined data of our study and published data revealed a total of 87 different MLL rearrangements of which 51 TPGs are now characterized at the molecular level. Interestingly, the four most frequently found TPGs (AF4, AF9, ENL and AF10) encode nuclear proteins that are part of a protein network involved in histone H3K79 methylation. Thus, translocations of the MLL gene, by itself coding for a histone H3K4 methyltransferase, are presumably not randomly chosen, rather functionally selected.


Subject(s)
Leukemia/genetics , Myeloid-Lymphoid Leukemia Protein/genetics , Oncogene Proteins, Fusion/genetics , Translocation, Genetic/genetics , Acute Disease , Adult , Child , Chromosome Aberrations , Chromosome Mapping , DNA/genetics , DNA/isolation & purification , Histone-Lysine N-Methyltransferase , Histones/metabolism , Humans , Methylation
19.
Leukemia ; 16(7): 1381-9, 2002 Jul.
Article in English | MEDLINE | ID: mdl-12094264

ABSTRACT

The clinical significance of WT1 gene expression at diagnosis and during therapy of AML has not yet been resolved. We analysed WT1 expression at presentation in an unselected group of 47 childhood AML patients using real-time quantitative reverse-transcription PCR. We also showed that within the first 30 h following aspiration RQ-RT-PCR results were not influenced by transportation time. We observed lower levels of WT1 transcript in AML M5 (P = 0.0015); no association was found between expression levels and sex, initial leukocyte count and karyotype-based prognostic groups. There was significant correlation between very low WT1 expression at presentation and excellent outcome (EFS P = 0.0014). Combined analysis of WT1 levels, three-colour flow cytometry residual disease detection and the course of the disease in 222 samples from 28 children with AML showed remarkable correlation. Fourteen patients expressed high WT1 levels at presentation. In eight of them, who suffered relapse or did not reach complete remission, dynamics of WT1 levels clearly correlated with the disease status and residual disease by flow cytometry. We conclude that very low WT1 levels at presentation represent a good prognostic factor and that RQ-RT-PCR-based analysis of WT1 expression is a promising and rapid approach for monitoring of MRD in approximately half of paediatric AML patients.


Subject(s)
Leukemia, Myeloid/genetics , WT1 Proteins/genetics , Acute Disease , Child , Child, Preschool , Female , Flow Cytometry , Gene Expression Regulation, Neoplastic , Humans , Leukemia, Myeloid/metabolism , Leukemia, Myeloid/pathology , Male , Neoplasm, Residual , Polymerase Chain Reaction , Predictive Value of Tests , Prognosis , Sensitivity and Specificity , WT1 Proteins/analysis
20.
Leukemia ; 16(4): 720-5, 2002 Apr.
Article in English | MEDLINE | ID: mdl-11960355

ABSTRACT

Pre-school acute lymphoblastic leukemia (ALL) peak is consistent in developed but not in developing countries and its magnitude apparently correlates with the socioeconomic status. A population-based study describing ALL incidence during socioeconomic transition has been lacking. Central European post-communist countries (with very low foreign migration and centralized statistics) offer reliable data for the period before and during major socioeconomic changes. Population-based data on Czech ALL patients younger than 18 years were taken from two independent Czech national registries partially overlapping in time (1980-1998, n = 1236 and 1991-1999, n = 570). During the 1980s and 1990s, ALL incidence among children 1-4 years increased 1.5 times (P = 0.01). This increase was more prominent in females than in males (slopes 0.13 and 0.09, P values 0.03 and >0.05, respectively). No significant change was observed in other age groups (0, 5-9, 10-14, 15-17 years or all others combined). We discuss possible underlying socioeconomic factors including infant care and breast-feeding, hygiene, birth order, industry and pollution. Moreover, we try to pinpoint the immunophenotypic/molecular-genetic subsets of ALL that might be socioeconomically affected. Selective increase of ALL in children 1-4 years old provides epidemiological evidence that etiology and/or trigger mechanisms are different for a considerable proportion of these children and that these mechanisms are exogenous.


Subject(s)
Precursor Cell Lymphoblastic Leukemia-Lymphoma/epidemiology , Age of Onset , Child, Preschool , Core Binding Factor Alpha 2 Subunit , Czech Republic/epidemiology , Demography , Female , Fusion Proteins, bcr-abl/genetics , Fusion Proteins, bcr-abl/metabolism , Humans , Incidence , Infant , Male , Myeloid-Lymphoid Leukemia Protein , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Ploidies , Reverse Transcriptase Polymerase Chain Reaction , Socioeconomic Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...