Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Cryst Growth Des ; 24(7): 2821-2832, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38585377

ABSTRACT

Colloidal quantum dot (CQD) infrared (IR) photodetectors can be fabricated and operated with larger spectral tunability, fewer limitations in terms of cooling requirements and substrate lattice matching, and at a potentially lower cost than detectors based on traditional bulk materials. Silver selenide (Ag2Se) has emerged as a promising sustainable alternative to current state-of-the-art toxic semiconductors based on lead, cadmium, and mercury operating in the IR. However, an impeding gap in available absorption bandwidth for Ag2Se CQDs exists in the short-wave infrared (SWIR) region due to degenerate doping by the environment, switching the CQDs from intrinsic interband semiconductors in the near-infrared (NIR) to intraband absorbing CQDs in the mid-wave infrared (MWIR). Herein, we show that the small molecular p-type dopant 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ) can be used to extract electrons from the 1Se state of MWIR active Ag2Se CQDs to activate their intrinsic energy gap in the SWIR window. We demonstrate quenching of the MWIR Ag2Se absorbance peak, shifting of nitrile vibrational peaks characteristic of charge-neutral F4-TCNQ, as well as enhanced CQD absorption around ∼2500 nm after doping both in ambient and under air-free conditions. We elucidate the doping mechanism to be one that involves an integer charge transfer akin to doping in semiconducting polymers. These indications of charge transfer are promising milestones on the path to achieving sustainable SWIR Ag2Se CQD photodetectors.

2.
Talanta ; 275: 126105, 2024 Apr 14.
Article in English | MEDLINE | ID: mdl-38640520

ABSTRACT

Long-term visualization of changes in plasma membrane dynamics during important physiological processes can provide intuitive and reliable information in a 4D mode. However, molecular tools that can visualize plasma membranes over extended periods are lacking due to the absence of effective design rules that can specifically track plasma membrane fluorescent dye molecules over time. Using plant plasma membranes as a model, we systematically investigated the effects of different alkyl chain lengths of FMR dye molecules on their performance in imaging plasma membranes. Our findings indicate that alkyl chain length can effectively regulate the permeability of dye molecules across plasma membranes. The study confirms that introducing medium-length alkyl chains improves the ability of dye molecules to target and anchor to plasma membranes, allowing for long-term imaging of plasma membranes. This provides useful design rules for creating dye molecules that enable long-term visualization of plasma membranes. Using the amphiphilic amino-styryl-pyridine fluorescent skeleton, we discovered that the inclusion of short alkyl chains facilitated rapid crossing of the plasma membrane by the dye molecules, resulting in staining of the cell nucleus and indicating improved cell permeability. Conversely, the inclusion of long alkyl chains hindered the crossing of the cell wall by the dye molecules, preventing staining of the cell membrane and demonstrating membrane impermeability to plant cells. The FMR dyes with medium-length alkyl chains rapidly crossed the cell wall, uniformly stained the cell membrane, and anchored to it for a long period without being transmembrane. This allowed for visualization and tracking of the morphological dynamics of the cell plasma membrane during water loss in a 4D mode. This suggests that the introduction of medium-length alkyl chains into amphiphilic fluorescent dyes can transform them from membrane-permeable fluorescent dyes to membrane-staining fluorescent dyes suitable for long-term imaging of the plasma membrane. In addition, we have successfully converted a membrane-impermeable fluorescent dye molecule into a membrane-staining fluorescent dye by introducing medium-length alkyl chains into the molecule. This molecular engineering of dye molecules with alkyl chains to regulate cell permeability provides a simple and effective design rule for long-term visualization of the plasma membrane, and a convenient and feasible means of chemical modification for efficient transmembrane transport of small molecule drugs.

3.
J Mater Chem B ; 12(11): 2761-2770, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38380679

ABSTRACT

Real-time tracking of dynamic changes in the three-dimensional morphology of the cell plasma membrane is of great importance for a deeper understanding of physiological processes related to the cell plasma membrane. However, there is a lack of imaging dyes that can specifically be used for a long term labelling of plasma membranes, especially for plant cells. Here, we have used molecular engineering strategies to develop a series of target-activated multicolour fluorescent dyes that can be used for long-term and three-dimensional imaging of plant cell plasma membranes. By combining different electron acceptors and donors, four molecular backbones with different emission colours from green to NIR have been obtained. In the designed styrene-based dyes, referred to as the SD dyes, several functional groups were introduced into the backbones to achieve the properties of target-activated fluorescence, rapid and wash-free staining, high plasma membrane targeting ability and long-term imaging function. Using onion epidermal cells as a platform, these dye molecules can provide high-quality imaging of the plasma membrane for up to 6 hours, providing a powerful tool for long-term monitoring of plasma membrane-related biological events. Calcium-mediated apoptosis of plant cells has been tracked for the first time by monitoring the morphological changes of the plasma membrane in real time using SD dyes. These dyes also exhibit excellent 3D imaging performance of the plasma membrane and were further used to track in real time the 3D morphological changes of the plasma membrane during plasmolysis of plant cells, providing a powerful imaging tool for three-dimensional (3D) biology. This work provides a set of multi-colour dye tools for long-term and three-dimensional imaging of plant cell plasma membranes, and also provides molecular design principles for guiding the transmembrane transport of small molecules.


Subject(s)
Fluorescent Dyes , Imaging, Three-Dimensional , Fluorescent Dyes/metabolism , Cell Membrane/metabolism , Apoptosis , Staining and Labeling
4.
Chemistry ; 29(53): e202301520, 2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37382237

ABSTRACT

Intermolecular [2+2] photodimerization provides a distinctive approach to construct photoresponsive fluorescent materials in a manner of switching on solid-state fluorescence. Herein, we report efficient photoactivation of bright solid-state fluorescence based on controllable intermolecular [2+2] photodimerization reaction of benzo[b]thiophene 1,1-dioxide (BTO) derivatives, which provides a simple and effective way to construct smart photoresponsive solid-state fluorescent materials. Rational choice of substituents in BTO molecular skeleton enables them to efficiently undergo photodimerization through regulating molecular stacking in crystal, and also leads to photoactivation of solid-state fluorescence due to the generation of brightly fluorescent photodimers. This intermolecular photodimerization reaction also offers an effective method to synthesize photostable AIEgens with purely through-space conjugation.

5.
Chem Sci ; 14(8): 2139-2148, 2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36845931

ABSTRACT

Fluorescent probes are valuable tools to visualize plasma membranes intuitively and clearly and their related physiological processes in a spatiotemporal manner. However, most existing probes have only realized the specific staining of the plasma membranes of animal/human cells within a very short time period, while almost no fluorescent probes have been developed for the long-term imaging of the plasma membranes of plant cells. Herein, we designed an AIE-active probe with NIR emission to achieve four-dimensional spatiotemporal imaging of the plasma membranes of plant cells based on a collaboration approach involving multiple strategies, demonstrated long-term real-time monitoring of morphological changes of plasma membranes for the first time, and further proved its wide applicability to plant cells of different types and diverse plant species. In the design concept, three effective strategies including the similarity and intermiscibility principle, antipermeability strategy and strong electrostatic interactions were combined to allow the probe to specifically target and anchor the plasma membrane for an ultralong amount of time on the premise of guaranteeing its sufficiently high aqueous solubility. The designed APMem-1 can quickly penetrate cell walls to specifically stain the plasma membranes of all plant cells in a very short time with advanced features (ultrafast staining, wash-free, and desirable biocompatibility) and the probe shows excellent plasma membrane specificity without staining other areas of the cell in comparison to commercial FM dyes. The longest imaging time of APMem-1 can be up to 10 h with comparable performance in both imaging contrast and imaging integrity. The validation experiments on different types of plant cells and diverse plants convincingly proved the universality of APMem-1. The development of plasma membrane probes with four-dimensional spatial and ultralong-term imaging ability provides a valuable tool to monitor the dynamic processes of plasma membrane-related events in an intuitive and real-time manner.

6.
Commun Biol ; 6(1): 59, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36650277

ABSTRACT

Tumor suppressor p53 prevents tumorigenesis by promoting cell cycle arrest and apoptosis through transcriptional regulation. Dysfunction of p53 occurs frequently in human cancers. Thus, p53 becomes one of the most promising targets for anticancer treatment. A bacterial effector protein azurin triggers tumor suppression by stabilizing p53 and elevating its basal level. However, the structural and mechanistic basis of azurin-mediated tumor suppression remains elusive. Here we report the atomic details of azurin-mediated p53 stabilization by combining X-ray crystallography with nuclear magnetic resonance. Structural and mutagenic analysis reveals that the p28 region of azurin, which corresponds to a therapeutic peptide, significantly contributes to p53 binding. This binding stabilizes p53 by disrupting COP1-mediated p53 ubiquitination and degradation. Using the structure-based design, we obtain several affinity-enhancing mutants that enable amplifying the effect of azurin-induced apoptosis. Our findings highlight how the structure of the azurin-p53 complex can be leveraged to design azurin derivatives for cancer therapy.


Subject(s)
Azurin , Tumor Suppressor Protein p53 , Ubiquitination , Humans , Azurin/chemistry , Bacterial Proteins/chemistry , Peptides/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
7.
Plant Biotechnol J ; 21(1): 14-16, 2023 01.
Article in English | MEDLINE | ID: mdl-36221906

ABSTRACT

PoDPBT, an O-benzoyltransferase belonging to the BAHD family, can catalyze the benzoylation of 8-debenzoylpaeoniflorin to paeoniflorin. PoDPBT is the first enzyme demonstrated to be involved in the modification stage of paeoniflorin biosynthesis. DFGGG, a new DFGWG-like motif, was revealed in the BAHD family. The transcriptome database provides a resource for further investigation of other enzyme genes involved in paeoniflorin biosynthesis.


Subject(s)
Paeonia , Paeonia/genetics , Acyltransferases/genetics , Monoterpenes , Catalysis
8.
Chem Commun (Camb) ; 58(77): 10837-10840, 2022 Sep 27.
Article in English | MEDLINE | ID: mdl-36069970

ABSTRACT

Restriction of intramolecular motions of AIEgens is greatly intensified by introducing dynamic metal coordination bonds to achieve dramatic fluorescence enhancement, which provides a simple and effective way to dramatically improve the emission efficiency of AIEgens. AIEgen-based metal complexes have an abnormal anti-heavy-atom effect, which contributes to their high emission efficiencies without changing their emission nature.


Subject(s)
Coordination Complexes , Fluorescent Dyes , Fluorescence , Fluorescent Dyes/chemistry
9.
Chemistry ; 28(70): e202202178, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36124833

ABSTRACT

Herein, we propose a rational design strategy by introducing photoactive thienyl and pyridyl groups into an AIE-active tetraarylethene skeleton to achieve highly efficient photochemistry-activated fluorescence enhancement from dominantly photo-physical aggregation-induced emission behavior, and prove that such photoactivated fluorescence enhancement is perfectly suited for superstable photocontrollable dual-mode patterning applications in both solution and solid matrix. It is found that the photoactivated fluorescence of designed AIEgen is attributed to the irreversible cyclized-dehydrogenation reaction under UV irradiation, and the oxidation product has a brighter fluorescence in both solution and solid states owning to its rigid and planar structure. The overall transformation rate of the AIEgen from its opened form to dehydrogenated form is up to nearly 100 % in a short period of UV irradiation, and the fast transformation and the stable product of this photochemical reaction guarantees super stability of photocontrolled patterning, which can be applied in photoactivated dual-mode patterning and advanced anti-counterfeiting.


Subject(s)
Fluorescent Dyes , Ultraviolet Rays , Fluorescent Dyes/chemistry , Spectrometry, Fluorescence
10.
Front Plant Sci ; 13: 980854, 2022.
Article in English | MEDLINE | ID: mdl-36119574

ABSTRACT

Paeoniflorin, a monoterpene glucoside, is increasingly used in the clinical treatment of many diseases because it has a variety of pharmacological activities. Besides, paeoniflorin has been considered the characteristic chemical constituent of Paeoniaceae plants since it was first reported in 1963. Therefore, how to better develop and utilize paeoniflorin in Paeoniaceae has always been a research hotspot. We reviewed the current knowledge on paeoniflorin in Paeoniaceae, with particular emphasis on its distribution and influencing factors. Moreover, the limited understanding of the biosynthesis pathway has restricted the production of paeoniflorin by synthetic biology. This review provides insights into the post-modification pathway of paeoniflorin biosynthesis and proposes directions for further analysis in the future.

11.
Nat Commun ; 13(1): 1581, 2022 03 24.
Article in English | MEDLINE | ID: mdl-35332155

ABSTRACT

Phosphate (Pi) starvation response (PHR) transcription factors play key roles in plant Pi homeostasis maintenance. They are negatively regulated by stand-alone SPX proteins, cellular receptors for inositol pyrophosphate (PP-InsP) nutrient messengers. How PP-InsP-bound SPX interacts with PHRs is poorly understood. Here, we report crystal structures of the rice SPX2/InsP6/PHR2 complex and of the PHR2 DNA binding (MYB) domain in complex with target DNA at resolutions of 3.1 Å and 2.7 Å, respectively. In the SPX2/InsP6/PHR2 complex, the signalling-active SPX2 assembles into a domain-swapped dimer conformation and binds two copies of PHR2, targeting both its coiled-coil (CC) oligomerisation domain and MYB domain. Our results reveal that the SPX2 senses PP-InsPs to inactivate PHR2 by establishing severe steric clashes with the PHR2 MYB domain, preventing DNA binding, and by disrupting oligomerisation of the PHR2 CC domain, attenuating promoter binding. Our findings rationalize how PP-InsPs activate SPX receptor proteins to target PHR family transcription factors.


Subject(s)
Oryza , Gene Expression Regulation, Plant , Homeostasis , Oryza/genetics , Oryza/metabolism , Phosphates/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants/metabolism , Transcription Factors/metabolism
12.
Front Chem ; 9: 732378, 2021.
Article in English | MEDLINE | ID: mdl-34414165

ABSTRACT

Perfluorocarboxylic acids (PFCAs) are an emerging class of persistent organic pollutants. During the fabrication process, it is unavoidable to form PFCA homologs or isomers which exhibit distinct occurrence, bioaccumulation, and toxicity. The precision measurement of PFCAs is therefore of significant importance. However, the existing characterization techniques, such as LC-MS/MS, cannot fully meet the requirement of isomer-specific analysis, largely due to the lack of authentic standards. Single-molecule sensors (SMSs) based on nanopore electrochemistry may be a feasible solution for PFCAs determination, thanks to their ultra-high spatiotemporal resolutions. Hence, as a first step, this work was to elucidate the influence of electrolyte concentration on the four most critical indicators of nanopore measurements, and furthermore, performance of nanopore SMSs. More specifically, three of the most representative short-chain PFCAs, perfluoropentanoic acid (PFPeA), perfluorohexanoic acid (PFHxA) and perfluoroheptanoic acid (PFHpA), were adopted as the target analytes, aerolysin nanopore was employed as the sensing interface, and 2, 3 and 4 M KCl solutions were used as electrolytes. It was found that, when the concentration of KCl solution increased from 2 to 4 M, the conductance of aerolysin nanopore increased almost linearly at a rate of 0.5 nS per molar KCl within the whole voltage range, the current blockade of PFPeA at -50 mV increased from 61.74 to 66.57% owing to the enhanced steric exclusion effect, the maximum dwell time was more than doubled from 14.5 to 31.5 ms, and the barrier limited capture rate increased by 8.3 times from 0.46 to 3.85 Hz. As a result, when using 4 M KCl as the electrolyte, over 90% of the PFPeA, PFHxA and PFHpA were accurately identified from a mixed sample, and the calculated limit of detection of PFPeA reached 320 nM, more than 24 times lower than in 2 M KCl. It was thus clear that tuning the electrolyte concentration was a simple but very effective approach to improve the performance of nanopore SMSs for PFCAs determination.

13.
Front Chem ; 9: 690520, 2021.
Article in English | MEDLINE | ID: mdl-34095090

ABSTRACT

Perfluorooctanoic acid (PFOA), a typical perfluorinated carboxylic acid, is an emerging type of permanent organic pollutants that are regulated by the Stockholm Convention. The degradation of PFOA, however, is quite challenging largely due to the ultra-high stability of C-F bonds. Compared with other techniques, photocatalytic degradation offers the potential advantages of simple operation under mild conditions as well as exceptional decomposition and defluorination efficiency. Titanium dioxide (TiO2) is one of the most frequently used photocatalysts, but so far, the pristine nanosized TiO2 (e.g., the commercial P25) has been considered inefficient for PFOA degradation, since the photo-generated hydroxyl radicals from TiO2 are not able to directly attack C-F bonds. Mesoporous Sb2O3/TiO2 heterojunctions were therefore rationally designed in this work, of which the confined Sb2O3 nanoparticles in mesoporous TiO2 framework could not only tune the band structure and also increase the number of active sites for PFOA degradation. It was found that, after loading Sb2O3, the absorption of UV light was enhanced, indicating a higher efficiency of light utilization; while the band gap was reduced, which accelerated the separation of photo-generated charge carriers; and most importantly, the valence band edge of the Sb2O3/TiO2 heterojunction was significantly lifted so as to prevent the occurrence of hydroxyl radical pathway. Under the optimal ratio of Sb2O3-TiO2, the resulting catalysts managed to remove 81.7% PFOA in 2 h, with a degradation kinetics 4.2 times faster than the commercial P25. Scavenger tests and electron spin resonance spectra further revealed that such improvement was mainly attributed to the formation of superoxide radicals and photo-generated holes, in which the former drove the decarboxylation from C7F15COOH-C7F15 •, and the latter promoted the direct electron transfer for the conversion of C7F15COO--C7F15COO•. The Sb2O3/TiO2 photocatalysts were highly recyclable, with nearly 90% of the initial activity being retained after five consecutive cycles, guaranteeing the feasibility of long-term operation.

14.
Sci Rep ; 9(1): 8271, 2019 06 04.
Article in English | MEDLINE | ID: mdl-31164661

ABSTRACT

The MSWI fly ash which contains a large number of heavy metal substances is a subsidiary product of waste incineration power generation technology. If the MSWI fly ash is disposed improperly, heavy metal pollutants will pose a great threat to environmental safety and human health. Based on the technology of electrokinetic remediation, the feasibility of removing heavy metal pollutants from the MSWI fly ash using a modified electrokinetic remediation device - cylinder device was evaluated in this study. Differing from the traditional cuboid device with the volume ratio of the cathode chamber to the anode chamber being 1:1, the volume ratio of the cathode chamber to the anode chamber of the cylinder device was 16:1. Changes in parameters, such as pH values and conductivity in the cathode and the anode chambers as well as current and voltage in the sample area were analysed under the voltage gradient of 2 V/cm. After the experiment, the average removal efficiencies for Zn, Pb, Cd and Cu in the sample area were 53.2%, 31.4%, 42.3% and 30.7%, respectively. It indicates that the cylinder device is effective in removing heavy metals from the MSWI fly ash. Adopting the cylinder device for the experimental study on the electrokinetic remediation technology could provide a better way of thinking for the future engineering practices and applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...