Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Death Dis ; 15(1): 70, 2024 01 18.
Article in English | MEDLINE | ID: mdl-38238297

ABSTRACT

Glucocorticoid (GC) is essential for maintaining immune homeostasis. While GC is known to regulate the expression of genes related to inflammation in immune cells, the effects of GC, especially in the presence of inflammation, on non-immune cells remain largely unexplored. In particular, the impact of GC on inflammatory cytokine-induced immune modulatory responses of tissue stromal cells is unknown, though it has been widely used to modulate tissue injuries. Here we found that GC could enhance the expression of TSG6, a vital tissue repair effector molecule, in IFNγ and TNFα treated human umbilical cord (UC)-MSCs. NF-κB activation was found to be required for GC-augmented TSG6 upregulation. STAT3, but not STAT1, was also found to be required for the TSG6 upregulation in MSCs exposed to IFNγ, TNFα and GC. Moreover, the phosphorylation (activation) of STAT3 was attenuated when NF-κB was knocked down. Importantly, human UC-MSCs pretreated with a cocktail containing GC, IFNγ, and TNFα could significantly enhance the therapeutic effect of human UC-MSCs in an acute lung injury mouse model, as reflected by reduced infiltration of immune cells and down-regulation of iNOS in macrophages in the lung. Together, the findings reveal a novel link between GR, NF-κB and STAT3 in regulating the immunomodulatory and regenerative properties of MSCs, providing novel information for the understanding and treatment of inflammatory conditions.


Subject(s)
Mesenchymal Stem Cells , NF-kappa B , Mice , Animals , Humans , NF-kappa B/metabolism , Cytokines/metabolism , Glucocorticoids/pharmacology , Tumor Necrosis Factor-alpha/pharmacology , Tumor Necrosis Factor-alpha/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/metabolism , Inflammation/metabolism , Mesenchymal Stem Cells/metabolism , STAT3 Transcription Factor/metabolism
2.
Oncogene ; 42(44): 3221-3235, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37704784

ABSTRACT

Chemotherapy resistance represents a major cause of therapeutic failure and mortality in cancer patients. Mesenchymal stromal cells (MSCs), an integral component of tumor microenvironment, are known to promote drug resistance. However, the detailed mechanisms remain to be elucidated. Here, we found that MSCs confer breast cancer resistance to doxorubicin by diminishing its intratumoral accumulation. Hyaluronan (HA), a major extracellular matrix (ECM) product of MSCs, was found to mediate the chemoresistant effect. The chemoresistant effect of MSCs was abrogated when hyaluronic acid synthase 2 (HAS2) was depleted or inhibited. Exogenous HA also protected tumor grafts from doxorubicin. Molecular dynamics simulation analysis indicates that HA can bind with doxorubicin, mainly via hydrophobic and hydrogen bonds, and thus reduce its entry into breast cancer cells. This mechanism is distinct from the reported chemoresistant effect of HA via its receptor on cell surface. High HA serum levels were also found to be positively associated with chemoresistance in breast cancer patients. Our findings indicate that the HA-doxorubicin binding dynamics can confer cancer cells chemoresistance. Reducing HA may enhance chemotherapy efficacy.


Subject(s)
Breast Neoplasms , Mesenchymal Stem Cells , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Hyaluronic Acid/metabolism , Doxorubicin/pharmacology , Hyaluronan Synthases/metabolism , Extracellular Matrix/metabolism , Mesenchymal Stem Cells/metabolism , Hyaluronan Receptors/metabolism , Tumor Microenvironment
3.
Cell Mol Immunol ; 20(10): 1171-1185, 2023 10.
Article in English | MEDLINE | ID: mdl-37580400

ABSTRACT

Mesenchymal stem/stromal cells (MSCs) possess robust immunoregulatory functions and are promising therapeutics for inflammatory disorders. This capacity is not innate but is activated or 'licensed' by inflammatory cytokines. The licensing mechanism remains unclear. Here, we examined whether inflammatory cytokines metabolically reprogrammed MSCs to confer this immunoregulatory capacity. In response to stimulation by inflammatory cytokines, MSCs exhibited a dramatic increase in the consumption of glucose, which was accompanied by an enhanced use of nicotinamide adenine dinucleotide (NAD+) and increased expression of nicotinamide phosphoribosyltransferase (NAMPT), a central enzyme in the salvage pathway for NAD+ production. When NAD+ synthesis was blocked by inhibiting or depleting NAMPT, the immunosuppressive function of MSCs induced by inflammatory cytokines was greatly attenuated. Consequently, when NAD+ metabolism in MSCs was perturbed, their therapeutic benefit was decreased in mice suffering from inflammatory bowel disease and acute liver injury. Further analysis revealed that NAMPT-driven production of NAD+ was critical for the inflammatory cytokine-induced increase in glycolysis in MSCs. Furthermore, the increase in glycolysis led to succinate accumulation in the tricarboxylic acid cycle, which led to hypoxia-inducible factor 1α (HIF-1α) stabilization and subsequently increased the transcription of key glycolytic genes, thereby persistently maintaining glycolytic flux. This study demonstrated that unlike its proinflammatory role in immune cells, NAD+ metabolism governs the anti-inflammatory function of MSCs during inflammation.


Subject(s)
Mesenchymal Stem Cells , NAD , Mice , Animals , NAD/metabolism , Glycolysis , Citric Acid Cycle , Cytokines/metabolism , Mesenchymal Stem Cells/metabolism
4.
Cell Death Discov ; 9(1): 269, 2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37507432

ABSTRACT

Muscle stem cells (MuSCs) have been demonstrated to exert impressive therapeutic efficacy in disease settings through orchestrating inflammatory microenvironments. Nevertheless, the mechanisms underlying the immunoregulatory property of MuSCs remain largely uncharacterized. Here, we showed that interleukin-4-induced-1 (IL4I1), an essential enzyme that catalyzes indole metabolism in humans, was highly expressed in human MuSCs exposed to IFN-γ and TNF-α. Functionally, the MuSCs were found to inhibit the infiltration of neutrophils into sites of inflammation in a IL4I1-dependent manner and thus ameliorate acute lung injury in mice. Mechanistically, the indole metabolites, including indole-3-pyruvic acid (I3P) and indole-3-aldehyde (I3A), produced by IL4I1, acted as ligands to activate aryl hydrocarbon receptor (AHR), leading to augmented expression of TNF-stimulated gene 6 (TSG-6) in inflammatory cytokine-primed MuSCs. Furthermore, I3P administration alone suppressed neutrophil infiltration into damaged lungs. I3P could also reduce the level of reactive oxygen species in neutrophils. Therefore, our study has uncovered a novel mechanism by which MuSCs acquire their immunoregulatory property and may help to develop or optimize MuSC-based therapies for inflammatory diseases.

5.
Cell Biosci ; 13(1): 81, 2023 May 10.
Article in English | MEDLINE | ID: mdl-37165408

ABSTRACT

Nicotinamide adenine dinucleotide (NAD+) is a critical metabolite that acts as a cofactor in energy metabolism, and serves as a cosubstrate for non-redox NAD+-dependent enzymes, including sirtuins, CD38 and poly(ADP-ribose) polymerases. NAD+ metabolism can regulate functionality attributes of innate and adaptive immune cells and contribute to inflammatory responses. Thus, the manipulation of NAD+ bioavailability can reshape the courses of immunological diseases. Here, we review the basics of NAD+ biochemistry and its roles in the immune response, and discuss current challenges and the future translational potential of NAD+ research in the development of therapeutics for inflammatory diseases, such as COVID-19.

6.
Biol Direct ; 16(1): 18, 2021 10 20.
Article in English | MEDLINE | ID: mdl-34670590

ABSTRACT

Skeletal muscle has an extraordinary regenerative capacity reflecting the rapid activation and effective differentiation of muscle stem cells (MuSCs). In the course of muscle regeneration, MuSCs are reprogrammed by immune cells. In turn, MuSCs confer immune cells anti-inflammatory properties to resolve inflammation and facilitate tissue repair. Indeed, MuSCs can exert therapeutic effects on various degenerative and inflammatory disorders based on their immunoregulatory ability, including effects primed by interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α). At the molecular level, the tryptophan metabolites, kynurenine or kynurenic acid, produced by indoleamine 2,3-dioxygenase (IDO), augment the expression of TNF-stimulated gene 6 (TSG6) through the activation of the aryl hydrocarbon receptor (AHR). In addition, insulin growth factor 2 (IGF2) produced by MuSCs can endow maturing macrophages oxidative phosphorylation (OXPHOS)-dependent anti-inflammatory functions. Herein, we summarize the current understanding of the immunomodulatory characteristics of MuSCs and the issues related to their potential applications in pathological conditions, including COVID-19.


Subject(s)
COVID-19/therapy , Immune System/physiology , Muscles/physiology , Regeneration/physiology , Stem Cells/cytology , Animals , COVID-19/immunology , Cell Adhesion Molecules/metabolism , Cell Differentiation , Cell Proliferation , Humans , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Inflammation , Insulin-Like Growth Factor II/metabolism , Interferon-gamma/metabolism , Kynurenic Acid/metabolism , Kynurenine/metabolism , Macrophages/metabolism , Mice , Muscles/metabolism , Oxidative Phosphorylation , Receptors, Aryl Hydrocarbon/metabolism , Tryptophan/chemistry , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...