Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Neurobiol Stress ; 15: 100395, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34568522

ABSTRACT

Corticotropin-releasing factor (CRF) signaling in the mesocorticolimbic system is known to modulate anxiety-like behavior and alcohol consumption, behaviors that also have been associated with the hyper-glutamatergic state of the lateral habenula (LHb) neurons in rats. However, the role of CRF signaling in the LHb on the glutamate transmission, anxiety-like behaviors and alcohol consumption is unknown. Here, we used male rats that had been consuming alcohol for three months to address this gap in the literature. First, using electrophysiological techniques, we evaluated CRF's effects on the glutamate transmission in LHb neurons in brain slices. CRF facilitated glutamate transmission. The facilitation was greater in neurons of alcohol-withdrawing rats than in those of naïve rats. The facilitation was mimicked by the activation of CRF receptor 1 (CRF1R) but attenuated by the activation of CRF receptor 2 (CRF2R). This facilitation was mediated by upregulating CRF1R-protein kinase A signaling. Conversely, protein kinase C blockade attenuated CRF's facilitation in neurons of naïve rats but promoted it in neurons of alcohol-withdrawing rats. Next, using site-direct pharmacology, we evaluated the role of CRF signaling in the LHb on anxiety-like behaviors and alcohol consumption. Intra-LHb inhibition of CRF1R or activation of CRF2R ameliorated the anxiety-like behaviors in alcohol-withdrawing rats and reduced their alcohol intake when drinking was resumed. These observations provide the first direct behavioral pharmacological and cellular evidence that CRF signaling in the LHb modulates glutamate transmission, anxiety-like behaviors and alcohol consumption, and that adaptation occurs in CRF signaling in the LHb after chronic alcohol consumption.

2.
Neuropharmacology ; 158: 107747, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31445991

ABSTRACT

Alcoholics often experience hyperalgesia, especially during abstinence, yet the underlying cellular and molecular bases are unclear. Recent evidence suggests that 5-HT type 2 receptors (5-HT2Rs) at glutamatergic synapses on lateral habenula (LHb) neurons may play a critical role. We, therefore, measured paw withdrawal responses to thermal and mechanical stimuli, and alcohol intake in a rat model of intermittent drinking paradigm, as well as spontaneous glutamatergic transmission (sEPSCs), and firing of LHb neurons in brain slices. Here, we report that nociceptive sensitivity was higher in rats at 24 h withdrawal from chronic alcohol consumption than that of alcohol-naive counterparts. The basal frequency of sEPSCs and firings was higher in slices of withdrawn rats than that of Naïve rats, and 5-HT2R antagonists attenuated the enhancement. Also, an acute ethanol-induced increase of sEPSCs and firings was smaller in withdrawal than in Naïve rats; it was attenuated by 5-HT2R antagonists but mimicked by 5-HT2R agonists. Importantly, intra-LHb infusion of 5-HT2R agonists increased nociceptive sensitivity in Naïve rats, while antagonists or 5-HT reuptake blocker decreased nociceptive sensitivity and alcohol intake in withdrawn rats. Additionally, KN-62, a CaMKII inhibitor, attenuated the enhancement of EPSCs and firing induced by acute alcohol and by 5-HT2R agonist. Furthermore, intra-LHb KN-62 reduced nociceptive sensitivity and alcohol intake. Quantitative real-time PCR assay detected mRNA of 5-HT2A and 2C in the LHb. Thus adaptation in 5-HT2R-CaMKII signaling pathway contributes to the hyper-glutamatergic state, the hyperactivity of LHb neurons as well as the higher nociceptive sensitivity in rats withdrawn from chronic alcohol consumption.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2/antagonists & inhibitors , Central Nervous System Depressants/pharmacology , Ethanol/pharmacology , Excitatory Postsynaptic Potentials/drug effects , Habenula/drug effects , Neurons/drug effects , Nociception/drug effects , Substance Withdrawal Syndrome/metabolism , 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/analogs & derivatives , 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/pharmacology , Animals , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Central Nervous System Depressants/adverse effects , Enzyme Inhibitors/pharmacology , Ethanol/adverse effects , Glutamic Acid/metabolism , Habenula/cytology , Habenula/metabolism , Neurons/metabolism , RNA, Messenger/drug effects , RNA, Messenger/metabolism , Rats , Receptor, Serotonin, 5-HT2A/drug effects , Receptor, Serotonin, 5-HT2A/genetics , Receptor, Serotonin, 5-HT2C/drug effects , Receptor, Serotonin, 5-HT2C/genetics , Receptors, Serotonin, 5-HT2/metabolism , Serotonin 5-HT2 Receptor Antagonists/pharmacology , Substance Withdrawal Syndrome/etiology
SELECTION OF CITATIONS
SEARCH DETAIL