Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
Int Wound J ; 21(3): e14767, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38444012

ABSTRACT

This meta-analysis aims to systematically investigate the clinical efficacy of Chinese herbal compound dressings in treating patients with diabetic foot ulcers (DFUs). A comprehensive computerised search was conducted in databases including PubMed, Embase, Google Scholar, Cochrane Library, China National Knowledge Infrastructure, and Wanfang databases, from database inception to November 2023, to identify randomised controlled trials (RCTs) concerning the use of Chinese herbal compound dressings in patients with DFU. Two researchers independently screened the literature, extracted data, and assessed the quality based on inclusion and exclusion criteria. Data analysis was performed using Stata 17.0 software. Overall, 18 RCTs involving 1405 DFU patients were included. The analysis indicated that compared to the control group, the group treated with Chinese herbal compound dressings had significantly shorter ulcer healing time (standardised mean difference [SMD] = -2.49, 95% confidence interval [CI]: -3.53 to -1.46, p < 0.001), reduced ulcer surface area (SMD = -3.38, 95% CI: -4.67 to -2.09, p < 0.001), and higher healing rates (odds ratio [OR] = 2.24, 95% CI: 1.72-2.92, p < 0.001) as well as overall effectiveness rates (OR = 4.56, 95% CI: 3.10-6.71, p < 0.001). This study demonstrates that the external application of Chinese herbal compound dressings in patients with DFU can significantly shorten the ulcer healing time and improve wound healing rates.


Subject(s)
Diabetes Mellitus , Diabetic Foot , Humans , Asian People , Bandages , China , Data Analysis , Diabetic Foot/drug therapy
2.
Biomacromolecules ; 25(3): 1950-1958, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38334281

ABSTRACT

Targeted photodynamic therapy (PDT) offers advantages over nontargeted approaches, including improved selectivity, efficacy, and reduced side effects. This study developed star-shaped glycopolymeric photosensitizers using porphyrin-based initiators via ATRP. Incorporating a porphyrin core gave the polymers fluorescence and ROS generation, while adding fructose improved solubility and targeting capabilities. The photosensitizers had high light absorption, singlet oxygen production, specificity, low dark toxicity, and biocompatibility. The glycopolymers with longer sugar arms and higher density showed better uptake on MCF-7 and MDA-MB-468 cells compared to HeLa cells, indicating enhanced targeting capabilities. Inhibition of endocytosis confirmed the importance of the GLUT5 receptor. The resulting polymers exhibited good cytocompatibility under dark conditions and satisfactory PDT under light irradiation. Interestingly, the polymers containing fructose have a GLUT5-dependent elimination effect on the MCF-7 and MDA-MB-468 cells. The intracellular ROS production followed a similar pattern, indicating that the fructose polymer exhibits specific targeting toward cells with GLUT5 receptors.


Subject(s)
Photochemotherapy , Porphyrins , Humans , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Photochemotherapy/methods , HeLa Cells , Reactive Oxygen Species , Porphyrins/pharmacology , Polymers/pharmacology , Fructose/pharmacology
3.
Biomacromolecules ; 25(3): 1371-1390, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38346318

ABSTRACT

The emergence of photoinduced energy/electron transfer-reversible addition-fragmentation chain transfer polymerization (PET-RAFT) not only revolutionized the field of photopolymerization but also accelerated the development of porphyrin-based photocatalysts and their analogues. The continual expansion of the monomer family compatible with PET-RAFT polymerization enhances the range of light radiation that can be harnessed, providing increased flexibility in polymerization processes. Furthermore, the versatility of PET-RAFT polymerization extends beyond its inherent capabilities, enabling its integration with various technologies in diverse fields. This integration holds considerable promise for the advancement of biomaterials with satisfactory bioapplications. As researchers delve deeper into the possibilities afforded by PET-RAFT polymerization, the collaborative efforts of individuals from diverse disciplines will prove invaluable in unleashing its full potential. This Review presents a concise introduction to the fundamental principles of PET-RAFT, outlines the progress in photocatalyst development, highlights its primary applications, and offers insights for future advancements in this technique, paving the way for exciting innovations and applications.


Subject(s)
Porphyrins , Humans , Polymerization , Positron-Emission Tomography
4.
Adv Mater ; 36(7): e2308655, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37884347

ABSTRACT

Tin halide perovskites are an appealing alternative to lead perovskites. However, owing to the lower redox potential of Sn(II)/Sn(IV), particularly under the presence of oxygen and water, the accumulation of Sn(IV) at the surface layer will negatively impact the device's performance and stability. To this end, this work has introduced a novel multifunctional molecule, 1,4-phenyldimethylammonium dibromide diamine (phDMADBr), to form a protective layer on the surface of Sn-based perovskite films. Strong interactions between phDMADBr and the perovskite surface improve electron transfer, passivating uncoordinated Sn(II), and fortify against water and oxygen. In situ grazing incidence wide-angle X-ray scattering (GIWAXS) analysis confirms the enhanced thermal stability of the quasi-2D phase, and hence the overall enhanced stability of the perovskite. Long-term stability in devices is achieved, retaining over 90% of the original efficiency for more than 200 hours in a 10% RH moisture N2 environment. These findings propose a new approach to enhance the operational stability of Sn-based perovskite devices, offering a strategy in advancing lead-free optoelectronic applications.

5.
ACS Appl Mater Interfaces ; 15(48): 56500-56510, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-37991727

ABSTRACT

Interfaces in perovskite solar cells play a crucial role in their overall performance, and therefore, detailed fundamental studies are needed for a better understanding. In the case of the classical n-i-p architecture, TiO2 is one of the most used electron-selective layers and can induce chemical reactions that influence the performance of the overall device stack. The interfacial properties at the TiO2/perovskite interface are often neglected, owing to the difficulty in accessing this interface. Here, we use X-rays of variable energies to study the interface of (compact and mesoporous) TiO2/perovskite in such a n-i-p architecture. The X-ray photoelectron spectroscopy and X-ray absorption spectroscopy methods show that the defect states present in the TiO2 layer are passivated by a chemical interaction of the perovskite precursor solution during the formation of the perovskite layer and form an organic layer at the interface. Such passivation of intrinsic defects in TiO2 removes charge recombination centers and shifts the bands upward. Therefore, interface defect passivation by oxidation of Ti3+ states, the organic cation layer, and an upward band bending at the TiO2/perovskite interface explain the origin of an improved electron extraction and hole-blocking nature of TiO2 in the n-i-p perovskite solar cells.

6.
J Agric Food Chem ; 71(48): 18857-18864, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-37994873

ABSTRACT

Plant-derived biocompounds play a crucial role in the field of renewable materials due to their sustainability as they can be converted into monomers for polymerization, comparable to numerous monomers obtained from petroleum. In this work, betulin, a triterpene derivative with antibacterial properties obtained from birch tree bark, was esterified to produce two varieties of α,ω-diene derivatives with different lengths of methylene spacers. These derivatives were then copolymerized with 2,2'-(ethylenedioxy)diethanethiol using thiol-ene photopolymerization. We optimized and confirmed the polymerization parameters such as solvents, catalysts, and monomer concentrations. These analyses allowed for the obtainment of polysulfides with a high molar mass of up to 38.9 kg/mol under the optimized conditions. Furthermore, the polysulfides were converted into polysulfoxides by using a dilute hydrogen peroxide solution. Thermal analysis of the obtained polymers revealed excellent thermal stability (up to 300 °C) and tunable glass transition temperatures depending on their molar mass and composition. We successfully produced fibers with a diameter of approximately 3.9 µm by using the electrospinning technique. The morphology and hydrophobicity of the fibers were analyzed by using scanning electron microscopy and water contact angle analysis. Plant-derived polymeric fibers exhibited good cellular biocompatibility and broad-spectrum antibacterial activity, making them promising candidates for applications in fruit preservation.


Subject(s)
Fruit , Triterpenes , Polymers , Anti-Bacterial Agents/pharmacology
7.
RSC Adv ; 13(43): 29866-29878, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37842685

ABSTRACT

A series of N-(2-(diphenylphosphino)ethyl)-2-alkyl-5,6,7,8-tetrahydroquinolin-8-amines was prepared and used in individually reacting with iron chloride under nitrogen atmosphere to form their iron(ii) complexes Fe1-Fe6. All compounds were characterized using FT-IR spectroscopy and elemental analyses, the organic compounds were confirmed with NMR measurements, and the iron complexes were submitted to single-crystal X-ray diffraction, revealing Fe1, Fe2, Fe4, Fe5, and Fe6 as either mono- or di-nuclear forms. Forming a binary system in situ with two equivalents of LiCH2SiMe3, all iron complexes Fe1-Fe6 efficiently initiated the ring opening polymerization of ε-caprolactone, achieving the TOF up to 8.8 × 103 h-1. More importantly, the resultant polycaprolactone (PCL) possessed high molecular weights with the Mn range of 9.21-24.3 × 104 g mol-1, being a rare case of the iron(ii) catalyst in producing PCL with such high molecular weight. The 1H NMR and MALDI-TOF investigations demonstrated that the PCLs were linear features capped with a methoxy group or CH2SiMe3 or cyclic structure that varied with the molar ratio of [ε-CL]/Fe.

9.
Adv Mater ; 35(39): e2302889, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37312254

ABSTRACT

The most efficient and stable perovskite solar cells (PSCs) are made from a complex mixture of precursors. Typically, to then form a thin film, an extreme oversaturation of the perovskite precursor is initiated to trigger nucleation sites, e.g., by vacuum, an airstream, or a so-called antisolvent. Unfortunately, most oversaturation triggers do not expel the lingering (and highly coordinating) dimethyl sulfoxide (DMSO), which is used as a precursor solvent, from the thin films; this detrimentally affects long-term stability. In this work, (the green) dimethyl sulfide (DMS) is introduced as a novel nucleation trigger for perovskite films combining, uniquely, high coordination and high vapor pressure. This gives DMS a universal scope: DMS replaces other solvents by coordinating more strongly and removes itself once the film formation is finished. To demonstrate this novel coordination chemistry approach, MAPbI3 PSCs are processed, typically dissolved in hard-to-remove (and green) DMSO achieving 21.6% efficiency, among the highest reported efficiencies for this system. To confirm the universality of the strategy, DMS is tested for FAPbI3 as another composition, which shows higher efficiency of 23.5% compared to 20.9% for a device fabricated with chlorobenzene. This work provides a universal strategy to control perovskite crystallization using coordination chemistry, heralding the revival of perovskite compositions with pure DMSO.

10.
Front Plant Sci ; 14: 1185393, 2023.
Article in English | MEDLINE | ID: mdl-37313255

ABSTRACT

Sophora moorcroftiana is a leguminous plant endemic to the Qinghai-Tibet Plateau. It has excellent abiotic stress tolerance and is considered an ideal species for local ecological restoration. However, the lack of genetic diversity in the seed traits of S. moorcroftiana hinders its conservation and utilization on the plateau. Therefore, in this study, genotypic variation and phenotypic correlations were estimated for nine seed traits among 15 accessions of S. moorcroftiana over two years, 2014 and 2019, respectively from 15 sample points. All traits evaluated showed significant (P< 0.05) genotypic variation. In 2014, accession mean repeatability was high for seed perimeter, length, width, and thickness, and 100-seed weight. In 2019, mean repeatability for seed perimeter and thickness, and 100-seed weight were high. The estimates of mean repeatability for seed traits across the two years ranged from 0.382 for seed length to 0.781 for seed thickness. Pattern analysis showed that 100-seed weight was significantly positively correlated with traits such as seed perimeter, length, width, and thickness, and identified populations with breeding pool potential. In the biplot, principal components 1 and 2 explained 55.22% and 26.72% of the total variation in seed traits, respectively. These accessions could produce breeding populations for recurrent selection to develop S. moorcroftiana varieties suitable for restoring the fragile ecological environment of the Qinghai-Tibet Plateau.

11.
Front Oncol ; 13: 1122284, 2023.
Article in English | MEDLINE | ID: mdl-37081985

ABSTRACT

Objective: To evaluate the effects of two genetic variants in the promoter of the miR-143/145 cluster on the risk of epithelial ovarian cancer (EOC) and the prognosis of EOC patients. Study design: Genotypes were determined by the polymerase chain reaction and ligase detection reaction method in 563 EOC patients and 576 healthy women. The expression of miR-143 and miR-145 were detected by quantitative real-time polymerase chain reaction (qRT-PCR) in fifty-two EOC tissues. Results: The rs4705342 CC genotype frequencies in EOC patients were higher than those in the controls (P = 0.014). Furthermore, the CC genotype of rs4705342 was associated with an advanced FIGO stage of EOC patients (P = 0.046). Patients with the rs4705342 CC genotype had shorter progression-free survival (PFS) and overall survival (OS) times than those carrying the TT genotype in multivariable analysis adjusting for clinical variables (HR = 1.30, 95% CI = 1.04-1.62, P = 0.020; HR = 1.33, 95% CI = 1.05-1.70, P = 0.020). In addition, the miR-145 levels were lower in EOC tissues with the rs4705342 CC genotype than in those with the TT genotype (P = 0.005). Conclusion: The CC genotype of rs4705342 was related to an increased risk of EOC and poor prognosis of EOC patients, and rs4705342 may serve as a molecular marker for predicting the development of EOC and the clinical outcome of EOC patients.

12.
J Nat Prod ; 86(4): 842-849, 2023 04 28.
Article in English | MEDLINE | ID: mdl-36857482

ABSTRACT

The combination of ring-closing metathesis with betulin enables the design and synthesis of novel biomolecules representing a library of triterpenoid derivatives for potential pharmacological research. In this work, cyclic olefin betulin derivatives were attempted to be prepared by the combination of ring-closing metathesis with betulin. Dicyclohexyl carbodiimide coupling reaction allowed the transformation of betulin into two types of linear olefin derivatives that have different methylene spacer lengths between the olefin and ester groups. Subsequently, betulin-based cycloolefins were synthesized by ring-closing metathesis using Grubbs first-generation catalyst. The influence of different parameters including solvents, temperature, catalysts, and catalyst loading on ring-closing metathesis was investigated. Cytotoxicity results indicated that these betulin-based olefin derivatives, derived from renewable bioresources, have potential applications in the biomedical field.


Subject(s)
Ruthenium , Cyclization , Alkenes , Catalysis
13.
Int J Mol Sci ; 24(5)2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36902072

ABSTRACT

Flower color is one of the crucial traits of ornamental plants. Rhododendron delavayi Franch. is a famous ornamental plant species distributed in the mountain areas of Southwest China. This plant has red inflorescence and young branchlets. However, the molecular basis of the color formation of R. delavayi is unclear. In this study, 184 MYB genes were identified based on the released genome of R. delavayi. These genes included 78 1R-MYB, 101 R2R3-MYB, 4 3R-MYB, and 1 4R-MYB. The MYBs were divided into 35 subgroups using phylogenetic analysis of the MYBs of Arabidopsis thaliana. The members of the same subgroup in R. delavayi had similar conserved domains and motifs, gene structures, and promoter cis-acting elements, which indicate their relatively conserved function. In addition, transcriptome based on unique molecular identifier strategy and color difference of the spotted petals, unspotted petals, spotted throat, unspotted throat, and branchlet cortex were detected. Results showed significant differences in the expression levels of R2R3-MYB genes. Weighted co-expression network analysis between transcriptome and chromatic aberration values of five types of red samples showed that the MYBs were the most important TFs involved in the color formation, of which seven were R2R3-MYB, and three were 1R-MYB. Two R2R3-MYB (DUH019226.1 and DUH019400.1) had the highest connectivity in the whole regulation network, and they were identified as hub genes for red color formation. These two MYB hub genes provide references for the study of transcriptional regulation of the red color formation of R. delavayi.


Subject(s)
Arabidopsis , Rhododendron , Transcription Factors/metabolism , Genes, myb , Phylogeny , Plant Proteins/genetics , Arabidopsis/genetics , Gene Expression Regulation, Plant
14.
Science ; 379(6630): 399-403, 2023 Jan 27.
Article in English | MEDLINE | ID: mdl-36701445

ABSTRACT

Daily temperature variations induce phase transitions and lattice strains in halide perovskites, challenging their stability in solar cells. We stabilized the perovskite black phase and improved solar cell performance using the ordered dipolar structure of ß-poly(1,1-difluoroethylene) to control perovskite film crystallization and energy alignment. We demonstrated p-i-n perovskite solar cells with a record power conversion efficiency of 24.6% over 18 square millimeters and 23.1% over 1 square centimeter, which retained 96 and 88% of the efficiency after 1000 hours of 1-sun maximum power point tracking at 25° and 75°C, respectively. Devices under rapid thermal cycling between -60° and +80°C showed no sign of fatigue, demonstrating the impact of the ordered dipolar structure on the operational stability of perovskite solar cells.

15.
ACS Biomater Sci Eng ; 8(12): 5110-5118, 2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36378953

ABSTRACT

Biocompounds play a significant role in the area of renewable polymers in terms of sustainability, as they can be employed or converted into monomers for polymerization in a manner similar to many petroleum-derived monomers. In this work, betulin, a plant-derived triterpene with antibacterial and antiviral properties, was converted to two kinds of α,ω-diene derivatives with different methylene spacer lengths between the olefin and the ester group via an esterification reaction. Polyolefins were subsequently made by acyclic diene metathesis (ADMET) polymerization of betulin-based α,ω-diene. The polymer consists of rigid betulin and flexible unsaturated aliphatic segments, which was confirmed by NMR spectroscopy and gel permeation chromatography (GPC). The influence of different parameters including temperature, catalysts, and catalyst loading on ADMET polymerization was investigated. These polyolefins with high molar mass (up to 20.0 kg/mol) were obtained in an elevated yield (≥95%). Thermal analysis of these (co)polymers showed excellent thermal stability (up to 360 °C) and tunable glass transition temperatures depending on the nature of betulin and alkene segments. To evaluate the antimicrobial potential of betulin-containing polymers, the fabrication of polyolefin fibrous mats (ca. 400 nm diameter) via the electrospinning technique was successfully achieved. Their morphology and hydrophobicity were studied by scanning electron microscopy (SEM) and water contact angle analyses. The fibrous mats possessed broad-spectrum antibacterial property, providing a feasible strategy to design betulin-based polymeric fibers for many applications in the biomedical field.


Subject(s)
Polyenes , Polymers , Polymerization , Polymers/pharmacology , Alkenes/pharmacology , Alkenes/chemistry , Anti-Bacterial Agents/pharmacology
16.
Nano Lett ; 22(17): 7112-7118, 2022 Sep 14.
Article in English | MEDLINE | ID: mdl-35998901

ABSTRACT

Chemically processed methylammonium tin-triiodide (CH3NH3SnI3) films include Sn in different oxidation states, leading to poor stability and low power conversion efficiency of the resulting solar cells (PSCs). The development of absorbers with Sn [2+] only has been identified as one of the critical steps to develop all Sn-based devices. Here, we report on coevaporation of CH3NH3I and SnI2 to obtain absorbers with Sn being only in the preferred oxidation state [+2] as confirmed by X-ray photoelectron spectroscopy. The Sn [4+]-free absorbers exhibit smooth highly crystalline surfaces and photoluminescence measurements corroborating their excellent optoelectronic properties. The films show very good stability under heat and light. Photoluminescence quantum yields up to 4 × 10-3 translate in a quasi Fermi-level splittings exceeding 850 meV under one sun equivalent conditions showing high promise in developing lead-free, high efficiency, and stable PSCs.

17.
Chem Sci ; 13(23): 6766-6781, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35774180

ABSTRACT

Organic-inorganic hybrid halide perovskite materials have attracted considerable research interest, especially for photovoltaics. In addition, their scope has been extended towards light-emitting devices, photodetectors, or detectors. However, the toxicity of lead (Pb) element in perovskite compositions limits their applications. Therefore, a tremendous research effort on replacing is underway. More specifically, tin-based perovskites have shown the highest potential for this purpose. However, many challenges remain before these materials reach the goals of stability, safety, and eventually commercial application. This perspective considers many aspects and the critical development possibilities of tin-based perovskites, including drawbacks and challenges based on their physical properties. Additionally, it provides insights for future device applications that go beyond solar cells. Finally, the existing challenges and opportunities in tin-based perovskites are discussed.

18.
Front Oncol ; 12: 931445, 2022.
Article in English | MEDLINE | ID: mdl-35875162

ABSTRACT

Objective: This study aimed to explore the roles of PARP1 mRNA and protein expression in platinum resistance and prognosis of EOC patients, and reveal the different roles of PARP1 protein in epithelial tumor and stroma cells. Methods: The PARP1 mRNA expression of the EOC tissues was examined by RT-qPCR. The impacts of PARP1 expression on prognosis were measured by Kaplan-Meier and Cox regression. Receiver operating characteristic (ROC) curve analysis was employed for calculating the diagnostic value of PARP1 on platinum resistance. The microarray of formalin-fixed, paraffin-embedded (FFPE) tissues was processed for multiplex immunofluorescence to detect the protein levels of PARP1 and cytokeratin (CK). Results: The PARP1mRNA expression of EOC patients was higher in the platinum-resistant group compared with the sensitive group (P<0.01). Kaplan-Meier analysis demonstrated that high PARP1 mRNA expression was associated with poor survival of EOC patients. In Cox regression analyses, high PARP1 mRNA expression independently predicted poor prognosis (P=0.001, HR=2.076, 95%CI=1.373-3.140). The area under the ROC curve of PARP1 mRNA for predicting the platinum resistance in EOC patients was 0.649, with a sensitivity of 0.607 and specificity of 0.668. Furthermore, the protein expression of PARP1 was higher in the platinum-resistant group than in the sensitive group (P<0.01) and associated with a worse prognosis. Additionally, according to CK labeling, we observed that enhanced expression of PARP1 in the CK+ region was associated with platinum resistance and lower survival, but in CK- region, it predicted a good prognosis and platinum sensitivity. Conclusion: PARP1 may be a potential biomarker to predict platinum resistance and prognosis for EOC patients, exerting different roles on epithelial tumor and stromal cells.

19.
Adv Sci (Weinh) ; 9(23): e2202441, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35718879

ABSTRACT

All-inorganic perovskites have emerged as promising photovoltaic materials due to their superior thermal stability compared to their heat-sensitive hybrid organic-inorganic counterparts. In particular, CsPbI2 Br shows the highest potential for developing thermally-stable perovskite solar cells (PSCs) among all-inorganic compositions. However, controlling the crystallinity and morphology of all-inorganic compositions is a significant challenge. Here, a simple, thermal gradient- and antisolvent-free method is reported to control the crystallization of CsPbI2 Br films. Optical in situ characterization is used to investigate the dynamic film formation during spin-coating and annealing to understand and optimize the evolving film properties. This leads to high-quality perovskite films with micrometer-scale grain sizes with a noteworthy performance of 17% (≈16% stabilized), fill factor (FF) of 80.5%, and open-circuit voltage (VOC ) of 1.27 V. Moreover, excellent phase and thermal stability are demonstrated even after extreme thermal stressing at 300 °C.

20.
Adv Sci (Weinh) ; 9(11): e2105739, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35212188

ABSTRACT

Flexible perovskite solar cells (FPSCs) represent a promising technology in the development of next-generation photovoltaic and optoelectronic devices. SnO2 electron transport layers (ETL) typically undergo significant cracking during the bending process of FPSCs, which can significantly compromise their charge transport properties. Herein, the semi-planar non-fullerene acceptor molecule Y6 (BT-core-based fused-unit dithienothiophen [3,2-b]-pyrrolobenzothiadiazole derivative) is introduced as the buffer layer for SnO2 -based FPSCs. It is found that the Y6 buffer layer can enhance the ability of charge extraction and bending stability for SnO2 ETL. Moreover, the internal stress of perovskite films is also reduced. As a result, SnO2 /Y6-based FPSCs achieved a power conversion efficiency (PCE) of 20.09% and retained over 80% of their initial efficiency after 1000 bending cycles at a curvature radius of 8 mm, while SnO2 -based devices only retain 60% of their initial PCE (18.60%) upon the same bending cycles. In addition, the interfacial charge extraction is also effectively improved in conjunction with reduced defect density upon incorporation of Y6 on the SnO2 ETL, as revealed by femtosecond transient absorption (Fs-TA) measurements.

SELECTION OF CITATIONS
SEARCH DETAIL
...