Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Adv Mater ; : e2310659, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38871360

ABSTRACT

Layered iron/manganese-based oxides are a class of promising cathode materials for sustainable batteries due to their high energy densities and earth abundance. However, the stabilization of cationic and anionic redox reactions in these cathodes during cycling at high voltage remain elusive. Here, an electrochemically/thermally stable P2-Na0.67Fe0.3Mn0.5Mg0.1Ti0.1O2 cathode material with zero critical elements is designed for sodium-ion batteries (NIBs) to realize a highly reversible capacity of ≈210 mAh g-1 at 20 mA g-1 and good cycling stability with a capacity retention of 74% after 300 cycles at 200 mA g-1, even when operated with a high charge cut-off voltage of 4.5 V versus sodium metal. Combining a suite of cutting-edge characterizations and computational modeling, it is shown that Mg/Ti co-doping leads to stabilized surface/bulk structure at high voltage and high temperature, and more importantly, enhances cationic/anionic redox reaction reversibility over extended cycles with the suppression of other undesired oxygen activities. This work fundamentally deepens the failure mechanism of Fe/Mn-based layered cathodes and highlights the importance of dopant engineering to achieve high-energy and earth-abundant cathode material for sustainable and long-lasting NIBs.

2.
Small ; : e2402108, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38586916

ABSTRACT

Lithium metal is a highly promising anode for next-generation high-energy-density rechargeable batteries. Nevertheless, its practical application faces challenges due to the uncontrolled lithium dendrites growth and infinite volumetric expansion during repetitive cycling. Herein, a composite lithium anode is designed by mechanically rolling and pressing a cerium oxide-coated carbon textile with lithium foil (Li@CeO2/CT). The in situ generated cerium dioxide (CeO2) and cerium trioxide (Ce2O3) form a heterojunction with a reduced lithium-ion migration barrier, facilitating the rapid lithium ions migration. Additionally, both CeO2 and Ce2O3 exhibit higher adsorbed energy with lithium, enabling faster and more distributed interfacial transport of lithium ions. Furthermore, the high specific surface area of 3D skeleton can effectively reduce local current density, and alleviate the lithium volumetric changes upon plating/stripping. Benefiting from this unique structure, the highly compact and uniform lithium deposition is constructed, allowing the Li@CeO2/CT symmetric cells to maintain a stable cycling for over 500 cycles at an exceptional high current density of 100 mA cm-2. When paired with LiNi0.91Co0.06Mn0.03O2 (NCM91) cathode, the cell achieves 74.3% capacity retention after 800 cycles at 1 C, and a remarkable capacity retention of 81.1% after 500 cycles even at a high rate of 4  C.

3.
Angew Chem Int Ed Engl ; 63(5): e202316112, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38088222

ABSTRACT

Compensating the irreversible loss of limited active lithium (Li) is essentially important for improving the energy-density and cycle-life of practical Li-ion battery full-cell, especially after employing high-capacity but low initial coulombic efficiency anode candidates. Introducing prelithiation agent can provide additional Li source for such compensation. Herein, we precisely implant trace Co (extracted from transition metal oxide) into the Li site of Li2 O, obtaining (Li0.66 Co0.11 □0.23 )2 O (CLO) cathode prelithiation agent. The synergistic formation of Li vacancies and Co-derived catalysis efficiently enhance the inherent conductivity and weaken the Li-O interaction of Li2 O, which facilitates its anionic oxidation to peroxo/superoxo species and gaseous O2 , achieving 1642.7 mAh/g~Li2O prelithiation capacity (≈980 mAh/g for prelithiation agent). Coupled 6.5 wt % CLO-based prelithiation agent with LiCoO2 cathode, substantial additional Li source stored within CLO is efficiently released to compensate the Li consumption on the SiO/C anode, achieving 270 Wh/kg pouch-type full-cell with 92 % capacity retention after 1000 cycles.

4.
Small ; 20(8): e2305690, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37840406

ABSTRACT

A Mg-cell with P2-Na2/3 Ni1/3 Mn2/3 O2 layered oxide cathode provides novel reaction mechanism not observed in Na-cells. The sodium/vacancy ordering and Jahn-Teller effects are suppressed with the insertion of magnesium ion. The Mg-cell exhibits different features when operating between 4.5 and 0.15 V and 3.9 and 0.15 V versus Mg2+ /Mg. To analyze the structural and chemical changes during Mg insertion, the cathode is first charged to obtain the Na1/3 Ni1/3 Mn2/3 O2 compound, which is formally accompanied by an oxidation from Ni2+ to Ni3+ . As structure models Mg1/6 Na1/3 Ni1/3 Mn2/3 O2 and Mg1/12 Na1/2 Ni1/3 Mn2/3 O2 are utilized with a large 2 3 a $2\sqrt 3 a$ × 2 3 a $2\sqrt 3 a$ supercell. On discharge, the Mg-cell exhibits a multistep profile which reaches ≈100 mA h g-1 with the valence change from Ni3+ to Ni2+ . Such profile is quite different from its sodium counterpart (230 mA h g-1 ) which exhibits the sodium/vacancy ordering and deleterious presence of Mn3+ . Depending on how the two interlayer spacings are filled by Na and Mg the "staged," "intermediated," and "average" models are analyzed for Mgy Na8 Ni8 Mn16 O48 supercell. This fact suggests differences in the cell performance when Mg is used as counter electrode providing some tips to improve the structure engineering on cathode materials.

5.
Small ; 19(12): e2206010, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36634973

ABSTRACT

Magnesium driven reaction in olivine-type MgMn0.5 Zn0.5 SiO4 structure is subject of study by experimental tests and density functional theory (DFT) calculations. The partial replacement of Mn in Oh sites by other divalent metal such as Zn to get MgMn0.5 Zn0.5 SiO4 cathode is successfully developed by a simple sol-gel method. Its comparison with the well-known MgMnSiO4 olivine-type structure with (Mg)M1 (Mn)M2 SiO4 cations distribution serves as the basis of this study to understand the structure, and the magnesium extraction/insertion properties of novel olivine-type (Mg)M1 (Mn0.5 Zn0.5 )M2 SiO4 composition. This work foresees to extend the study to others divalent elements in olivine-type (Mg)M1 (Mn0.5 M0.5 )M2 SiO4 structure with M = Fe, Ca, Mg, and Ni by DFT calculations. The obtained results indicate that the energy density can be attuned between 520 and 440 W h kg-1 based on two properties of atomic weight and redox chemistry. The presented results commit to open new paths toward development of cathodes materials for Mg batteries.

6.
Acc Chem Res ; 56(3): 284-296, 2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36696961

ABSTRACT

ConspectusLithium-ion batteries (LIBs) are ubiquitous in all modern portable electronic devices such as mobile phones and laptops as well as for powering hybrid electric vehicles and other large-scale devices. Sodium-ion batteries (NIBs), which possess a similar cell configuration and working mechanism, have already been proven as ideal alternatives for large-scale energy storage systems. The advantages of NIBs are as follows. First, sodium resources are abundantly distributed in the earth's crust. Second, high-performance NIB cathode materials can be fabricated by using solely inexpensive and noncritical transition metals such as manganese and iron, which further reduces the cost of the required raw materials. Recently, the unprecedented demand for lithium and other critical minerals has driven the cost of these primary raw materials (which are utilized in LIBs) to a historic high and thus triggered the commercialization of NIBs.Sodium layered transition metal oxides (NaxTMO2, TM = transition metal/s), such as Mn-based sodium layered oxides, represent an important family of cathode materials with the potential to reduce costs, increase energy density and cycling stability, and improve the safety of NIBs for large-scale energy storage. However, these layered oxides face several key challenges, including irreversible phase transformations during cycling, poor air stability, complex charge-compensation mechanisms, and relatively high cost of the full cell compared to LiFePO4-based LIBs. Our work has focused on the techno-economic analysis, the degradation mechanism of NaxTMO2 upon cycling and air exposure, and the development of effective strategies to improve their electrochemical performances and air stability. Correlating structure-performance relationships and establishing general design strategies of NaxTMO2 must be considered for the commercialization of NIBs.In this Account, we discuss the recent progress in the development of air-stable, electrochemically stable, and cost-effective NaxTMO2. The favorable redox-active cations for NaxTMO2 are emphasized in terms of abundance, cost, supply, and energy density. Different working mechanisms related to NaxTMO2 are summarized, including the electrochemical reversibility, the main structural transformations during the charge and discharge processes, and the charge-compensation mechanisms that accompany the (de)intercalation of Na+ ions, followed by discussions to improve the stability toward ambient air and upon cycling. Then the techno-economics are presented, with an emphasis on cathodes with different chemical compositions, cost breakdown of battery packs, and Na deficiency, factors that are critical to the large-scale implementation. Finally, this Account concludes with an overview of the remaining challenges and new opportunities concerning the practical applications of NaxTMO2, with an emphasis on the cost, large-scale fabrication capability, and electrochemical performance.

7.
ACS Appl Mater Interfaces ; 14(38): 43127-43140, 2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36099581

ABSTRACT

The fabrication of low-cost carbon materials and high-performance sodium- and magnesium-ion batteries comprising hierarchical porous electrodes and superior electrolytes is necessary for complementing Li-ion energy storage. In this work, nongraphitic high-surface porous carbons (NGHSPCs) exhibited an unprecedented formation of n-stages (stage-1 and stage-2) due to the co-intercalation of sodium (Na(dgm)2C20) with diglyme. X-ray diffraction patterns, Patterson diagram, Raman spectra, and IR spectra suggested the presence of n-stages. This phenomenon implies an increase of the initial capacity (∼200 mAh g-1) and good Na-ion diffusion (2.97 × 10-13 cm2 s-1), employing diglyme as compared to standard electrolytes containing propylene carbonate and fluoroethylene carbonate. Additionally, the current approach is scalable to full Na- and Mg-ion cells by using t-Na5V(PO4)2F2 and MgMnSiO4 cathodes, respectively, reaching 250 and 110 W h kg-1 based on the anode mass. The simultaneous Mg (de)insertion from/into MgMnSiO4 and the adsorption/desorption of bistriflimide ions on the NGHSPC surface is responsible for capacity enhancement.

8.
Small ; 17(47): e2103778, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34632702

ABSTRACT

Reducing SF6 (as gas cathode) in Li batteries is a promising concept for the double benefit of mildly converting greenhouse SF6 and providing a high theoretical energy density of 3922 Wh kg-1 . However, the reduction process is hampered by its sluggish kinetics. Here, cobalt phthalocyanine (CoPc) molecules immobilized on porous carbon matrix are, for the first time, introduced to the LiSF6 chemistry to deliver an enhanced energy density. It is revealed that the high redox potential of Co(II)Pc/[Co(I)Pc]- (≈2.85 V) facilitates the formation of Co(I)N4 sites to catalyze the SF6 electrochemical reduction. By using highly porous holey nitrogen-doped carbon nanocages as carbon matrix, the LiSF6 cells deliver a high discharge voltage of 2.82 V at 50 mA gC+CoPc -1 and an unprecedented areal capacity of 25 mAh cm-2 at 0.1 mA cm-2 , much superior to previous results. This work opens up new possibilities for high-efficiency conversion of SF6 in lithium batteries.

9.
ACS Appl Mater Interfaces ; 13(32): 38305-38314, 2021 Aug 18.
Article in English | MEDLINE | ID: mdl-34346686

ABSTRACT

Among cathode materials for sodium-ion batteries, Mn-based layered oxides have attracted enormous attention owing to their high capacity, cost-effectiveness, and fast transport channels. However, their practical application is hindered by the unsatisfied structural stability and the deficient understanding of electrochemical reaction mechanisms. Among these issues, the research of transition metal (TM) vacancy remains highly active due to their modulation roles on the anionic redox reactions, but their effects on structural and electrochemical stability remain obscure. Herein, based on Al-substituted P2-type Na2/3MnO2, we comprehensively investigate the effects of TM vacancies on the corresponding layered oxides. With several characterization techniques such as neutron diffraction, superconducting quantum interferometry, in situ X-ray diffraction, ex situ solid-state nuclear magnetic resonance techniques, and X-ray photoelectron spectroscopy, we determined the TM vacancy content and further revealed that higher content of TM vacancies (7.8%) in the transition layer is beneficial to mitigate the structure evolutions and maintain the P2 structure during cycling in voltage range 1.5-4.5 V, while the oxides with lower content of TM vacancies (1.6%) deliver higher discharge capacity but experience complicated phase transition, including stacking faults and P2-P2' transitions. It is demonstrated that regulating the contents of TM vacancies can be utilized as an effective strategy to tune the structure stability and electrochemical performances of layered sodium oxide cathodes.

10.
Nat Commun ; 12(1): 4903, 2021 Aug 12.
Article in English | MEDLINE | ID: mdl-34385435

ABSTRACT

Layered transition metal oxides are the most important cathode materials for Li/Na/K ion batteries. Suppressing undesirable phase transformations during charge-discharge processes is a critical and fundamental challenge towards the rational design of high-performance layered oxide cathodes. Here we report a shale-like NaxMnO2 (S-NMO) electrode that is derived from a simple but effective water-mediated strategy. This strategy expands the Na+ layer spacings of P2-type Na0.67MnO2 and transforms the particles into accordion-like morphology. Therefore, the S-NMO electrode exhibits improved Na+ mobility and near-zero-strain property during charge-discharge processes, which leads to outstanding rate capability (100 mAh g-1 at the operation time of 6 min) and cycling stability (>3000 cycles). In addition, the water-mediated strategy is feasible to other layered sodium oxides and the obtained S-NMO electrode has an excellent tolerance to humidity. This work demonstrates that engineering the spacings of alkali-metal layer is an effective strategy to stabilize the structure of layered transition metal oxides.

11.
Nat Commun ; 12(1): 13, 2021 Jan 04.
Article in English | MEDLINE | ID: mdl-33397895

ABSTRACT

Energy storage with high energy density and low cost has been the subject of a decades-long pursuit. Sodium-ion batteries are well expected because they utilize abundant resources. However, the lack of competent cathodes with both large capacities and long cycle lives prevents the commercialization of sodium-ion batteries. Conventional cathodes with hexagonal-P2-type structures suffer from structural degradations when the sodium content falls below 33%, or when the integral anions participate in gas evolution reactions. Here, we show a "pillar-beam" structure for sodium-ion battery cathodes where a few inert potassium ions uphold the layer-structured framework, while the working sodium ions could diffuse freely. The thus-created unorthodox orthogonal-P2 K0.4[Ni0.2Mn0.8]O2 cathode delivers a capacity of 194 mAh/g at 0.1 C, a rate capacity of 84% at 1 C, and an 86% capacity retention after 500 cycles at 1 C. The addition of the potassium ions boosts simultaneously the energy density and the cycle life.

12.
ACS Appl Mater Interfaces ; 12(36): 40347-40354, 2020 Sep 09.
Article in English | MEDLINE | ID: mdl-32805881

ABSTRACT

In this work, Li-rich Li1.2Mn0.43+Mnx4+Ti0.4-xO2 (LMMxTO, 0 ≤ x ≤ 0.4) oxides have been studied for the first time. X-ray diffraction (XRD) patterns show a cation-disordered rocksalt structure when x ranges from 0 to 0.2. After Mn4+ substitution, LMM0.2TO delivers a high specific capacity of 322 mAh g-1 at room temperature (30 °C, 30 mA g-1) and even 352 mAh g-1 (45 °C, 30 mA g-1) with an energy density of 1041 Wh kg-1. The reason for such a high capacity of LMM0.2TO is ascribed to the increase of both cationic (Mn) and anionic (O) redox after Mn4+ substitution, which is proved by dQ/dV curves, X-ray absorption near edge structure, DFT calculations, and in situ XRD results. In addition, the roles of Mn3+ and Ti4+ in LMM0.2TO are also discussed in detail. A ternary phase diagram is established to comprehend and further optimize the earth-abundant Mn3+-Mn4+-Ti4+ system. This work gives an innovative strategy to improve the energy density, broadening the ideas of designing Li-rich materials with better performance.

13.
Nat Commun ; 11(1): 3544, 2020 Jul 15.
Article in English | MEDLINE | ID: mdl-32669558

ABSTRACT

Air-stability is one of the most important considerations for the practical application of electrode materials in energy-harvesting/storage devices, ranging from solar cells to rechargeable batteries. The promising P2-layered sodium transition metal oxides (P2-NaxTmO2) often suffer from structural/chemical transformations when contacted with moist air. However, these elaborate transitions and the evaluation rules towards air-stable P2-NaxTmO2 have not yet been clearly elucidated. Herein, taking P2-Na0.67MnO2 and P2-Na0.67Ni0.33Mn0.67O2 as key examples, we unveil the comprehensive structural/chemical degradation mechanisms of P2-NaxTmO2 in different ambient atmospheres by using various microscopic/spectroscopic characterizations and first-principle calculations. The extent of bulk structural/chemical transformation of P2-NaxTmO2 is determined by the amount of extracted Na+, which is mainly compensated by Na+/H+ exchange. By expanding our study to a series of Mn-based oxides, we reveal that the air-stability of P2-NaxTmO2 is highly related to their oxidation features in the first charge process and further propose a practical evaluating rule associated with redox couples for air-stable NaxTmO2 cathodes.

14.
ACS Appl Mater Interfaces ; 12(6): 7277-7284, 2020 Feb 12.
Article in English | MEDLINE | ID: mdl-31961644

ABSTRACT

As a parent compound of Li-rich electrodes, Li2MnO3 exhibits high capacity during the initial charge; however, it suffers notoriously low Coulombic efficiency due to oxygen and surface activities. Here, we successfully optimize the oxygen activities toward reversible oxygen redox reactions by intentionally introducing protons into lithium octahedral vacancies in the Li2MnO3 system with its original structural integrity maintained. Combining structural probes, theoretical calculations, and resonant inelastic X-ray scattering results, a moderate coupling between the introduced protons and lattice oxygen at the oxidized state is revealed, which stabilizes the oxygen activities during charging. Such a coupling leads to an unprecedented initial Coulombic efficiency (99.2%) with a greatly improved discharge capacity of 302 mAh g-1 in the protonated Li2MnO3 electrodes. These findings directly demonstrate an effective concept for controlling oxygen activities in Li-rich systems, which is critical for developing high-energy cathodes in batteries.

15.
Angew Chem Int Ed Engl ; 58(50): 18086-18095, 2019 Dec 09.
Article in English | MEDLINE | ID: mdl-31587462

ABSTRACT

Sodium layered P2-stacking Na0.67 MnO2 materials have shown great promise for sodium-ion batteries. However, the undesired Jahn-Teller effect of the Mn4+ /Mn3+ redox couple and multiple biphasic structural transitions during charge/discharge of the materials lead to anisotropic structure expansion and rapid capacity decay. Herein, by introducing abundant Al into the transition-metal layers to decrease the number of Mn3+ , we obtain the low cost pure P2-type Na0.67 Alx Mn1-x O2 (x=0.05, 0.1 and 0.2) materials with high structural stability and promising performance. The Al-doping effect on the long/short range structural evolutions and electrochemical performances is further investigated by combining in situ synchrotron XRD and solid-state NMR techniques. Our results reveal that Al-doping alleviates the phase transformations thus giving rise to better cycling life, and leads to a larger spacing of Na+ layer thus producing a remarkable rate capability of 96 mAh g-1 at 1200 mA g-1 .

16.
Adv Mater ; 29(36)2017 Sep.
Article in English | MEDLINE | ID: mdl-28783217

ABSTRACT

One of the key challenges of aqueous supercapacitors is the relatively low voltage (0.8-2.0 V), which significantly limits the energy density and feasibility of practical applications of the device. Herein, this study reports a novel Ni-Mn-O solid-solution cathode to widen the supercapacitor device voltage, which can potentially suppress the oxygen evolution reaction and thus be operated stably within a quite wide potential window of 0-1.4 V (vs saturated calomel electrode) after a simple but unique phase-transformation electrochemical activation. The solid-solution structure is designed with an ordered array architecture and in situ nanocarbon modification to promote the charge/mass transfer kinetics. By paring with commercial activated carbon anode, an ultrahigh voltage asymmetric supercapacitor in neutral aqueous LiCl electrolyte is assembled (2.4 V; among the highest for single-cell supercapacitors). Moreover, by using a polyvinyl alcohol (PVA)-LiCl electrolyte, a 2.4 V hydrogel supercapacitor is further developed with an excellent Coulombic efficiency, good rate capability, and remarkable cycle life (>5000 cycles; 95.5% capacity retention). Only one cell can power the light-emitting diode indicator brightly. The resulting maximum volumetric energy density is 4.72 mWh cm-3 , which is much superior to previous thin-film manganese-oxide-based supercapacitors and even battery-supercapacitor hybrid devices.

17.
Adv Sci (Weinh) ; 4(7): 1600539, 2017 07.
Article in English | MEDLINE | ID: mdl-28725528

ABSTRACT

Design and fabrication of electrochemical energy storage systems with both high energy and power densities as well as long cycling life is of great importance. As one of these systems, Battery-supercapacitor hybrid device (BSH) is typically constructed with a high-capacity battery-type electrode and a high-rate capacitive electrode, which has attracted enormous attention due to its potential applications in future electric vehicles, smart electric grids, and even miniaturized electronic/optoelectronic devices, etc. With proper design, BSH will provide unique advantages such as high performance, cheapness, safety, and environmental friendliness. This review first addresses the fundamental scientific principle, structure, and possible classification of BSHs, and then reviews the recent advances on various existing and emerging BSHs such as Li-/Na-ion BSHs, acidic/alkaline BSHs, BSH with redox electrolytes, and BSH with pseudocapacitive electrode, with the focus on materials and electrochemical performances. Furthermore, recent progresses in BSH devices with specific functionalities of flexibility and transparency, etc. will be highlighted. Finally, the future developing trends and directions as well as the challenges will also be discussed; especially, two conceptual BSHs with aqueous high voltage window and integrated 3D electrode/electrolyte architecture will be proposed.

18.
Sci Rep ; 5: 7780, 2015 Jan 14.
Article in English | MEDLINE | ID: mdl-25586374

ABSTRACT

Hybrid supercapacitor (HSC), which typically consists of a Li-ion battery electrode and an electric double-layer supercapacitor electrode, has been extensively investigated for large-scale applications such as hybrid electric vehicles, etc. Its application potential for thin-film downsized energy storage systems that always prefer high volumetric energy/power densities, however, has not yet been explored. Herein, as a case study, we develop an entirely binder-free HSC by using multiwalled carbon nanotube (MWCNT) network film as the cathode and Li(4)Ti(5)O(12) (LTO) nanowire array as the anode and study the volumetric energy storage capability. Both the electrode materials are grown directly on carbon cloth current collector, ensuring robust mechanical/electrical contacts and flexibility. Our 3 V HSC device exhibits maximum volumetric energy density of ~4.38 mWh cm(-3), much superior to those of previous supercapacitors based on thin-film electrodes fabricated directly on carbon cloth and even comparable to the commercial thin-film lithium battery. It also has volumetric power densities comparable to that of the commercial 5.5 V/100 mF supercapacitor (can be operated within 3 s) and has excellent cycling stability (~92% retention after 3000 cycles). The concept of utilizing binder-free electrodes to construct HSC for thin-film energy storage may be readily extended to other HSC electrode systems.

19.
Nanomaterials (Basel) ; 5(4): 1756-1765, 2015 Oct 22.
Article in English | MEDLINE | ID: mdl-28347093

ABSTRACT

As promising candidates for next-generation energy storage devices, aqueous rechargeable batteries are safer and cheaper than organic Li ion batteries. But due to the narrow voltage window of aqueous electrolytes, proper anode materials with low redox potential and high capacity are quite rare. In this work, bismuth electrode film was directly grown by a facile hydrothermal route and tested in LiOH, NaOH and KOH electrolytes. With low redox potential (reduction/oxidation potentials at ca. -0.85/-0.52 V vs. SCE, respectively) and high specific capacity (170 mAh·g-1 at current density of 0.5 A·g-1 in KOH electrolyte), Bi was demonstrated as a suitable anode material for aqueous batteries. Furthermore, by electrochemical impedance spectroscopy (EIS) analysis, we found that with smaller Rs and faster ion diffusion coefficient, Bi electrode film in KOH electrolyte exhibited better electrochemical performance than in LiOH and NaOH electrolytes.

SELECTION OF CITATIONS
SEARCH DETAIL
...