Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters











Publication year range
1.
Commun Biol ; 5(1): 436, 2022 05 10.
Article in English | MEDLINE | ID: mdl-35538218

ABSTRACT

Glioblastomas remain the most lethal primary brain tumors. Natural killer (NK) cell-based therapy is a promising immunotherapeutic strategy in the treatment of glioblastomas, since these cells can select and lyse therapy-resistant glioblastoma stem-like cells (GSLCs). Immunotherapy with super-charged NK cells has a potential as antitumor approach since we found their efficiency to kill patient-derived GSLCs in 2D and 3D models, potentially reversing the immunosuppression also seen in the patients. In addition to their potent cytotoxicity, NK cells secrete IFN-γ, upregulate GSLC surface expression of CD54 and MHC class I and increase sensitivity of GSLCs to chemotherapeutic drugs. Moreover, NK cell localization in peri-vascular regions in glioblastoma tissues and their close contact with GSLCs in tumorospheres suggests their ability to infiltrate glioblastoma tumors and target GSLCs. Due to GSLC heterogeneity and plasticity in regards to their stage of differentiation personalized immunotherapeutic strategies should be designed to effectively target glioblastomas.


Subject(s)
Glioblastoma , Cell Differentiation , Glioblastoma/metabolism , Glioblastoma/therapy , Humans , Immunotherapy, Adoptive , Killer Cells, Natural , Neoplastic Stem Cells
2.
Int J Mol Sci ; 23(3)2022 Feb 04.
Article in English | MEDLINE | ID: mdl-35163706

ABSTRACT

Glioblastoma (GBM) is the most common and deadly primary brain tumor in adults. Understanding GBM pathobiology and discovering novel therapeutic targets are critical to finding efficient treatments. Upregulation of the lysosomal cysteine carboxypeptidase cathepsin X has been linked to immune dysfunction and neurodegenerative diseases, but its role in cancer and particularly in GBM progression in patients is unknown. In this study, cathepsin X expression and activity were found to be upregulated in human GBM tissues compared to low-grade gliomas and nontumor brain tissues. Cathepsin X was localized in GBM cells as well as in tumor-associated macrophages and microglia. Subsequently, potent irreversible (AMS36) and reversible (Z7) selective cathepsin X inhibitors were tested in vitro. Selective cathepsin X inhibitors decreased the viability of patient-derived GBM cells as well as macrophages and microglia that were cultured in conditioned media of GBM cells. We next examined the expression pattern of neuron-specific enzyme γ-enolase, which is the target of cathepsin X. We found that there was a correlation between high proteolytic activity of cathepsin X and C-terminal cleavage of γ-enolase and that cathepsin X and γ-enolase were colocalized in GBM tissues, preferentially in GBM-associated macrophages and microglia. Taken together, our results on patient-derived material suggest that cathepsin X is involved in GBM progression and is a potential target for therapeutic approaches against GBM.


Subject(s)
Brain Neoplasms/metabolism , Cathepsin Z/metabolism , Glioblastoma/metabolism , Phosphopyruvate Hydratase/metabolism , Tumor Microenvironment , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Cathepsin Z/antagonists & inhibitors , Cathepsin Z/genetics , Gene Expression Regulation, Neoplastic , Glioblastoma/drug therapy , Glioblastoma/genetics , Humans , Macrophages/drug effects , Macrophages/metabolism , Microglia/drug effects , Microglia/metabolism , Up-Regulation
3.
Antioxidants (Basel) ; 10(8)2021 Aug 23.
Article in English | MEDLINE | ID: mdl-34439576

ABSTRACT

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are severe neurodegenerative disorders that belong to a common disease spectrum. The molecular and cellular aetiology of the spectrum is a highly complex encompassing dysfunction in many processes, including mitochondrial dysfunction and oxidative stress. There is a paucity of treatment options aside from therapies with subtle effects on the post diagnostic lifespan and symptom management. This presents great interest and necessity for the discovery and development of new compounds and therapies with beneficial effects on the disease. Polyphenols are secondary metabolites found in plant-based foods and are well known for their antioxidant activity. Recent research suggests that they also have a diverse array of neuroprotective functions that could lead to better treatments for neurodegenerative diseases. We present an overview of the effects of various polyphenols in cell line and animal models of ALS/FTD. Furthermore, possible mechanisms behind actions of the most researched compounds (resveratrol, curcumin and green tea catechins) are discussed.

4.
Cells ; 9(4)2020 04 14.
Article in English | MEDLINE | ID: mdl-32295162

ABSTRACT

The neurotropic and extremophilic black yeast Exophiala dermatitidis (Herpotrichellaceae) inhabits diverse indoor environments, in particular bathrooms, steam baths, and dishwashers. Here, we show that the selected strain, EXF-10123, is polymorphic, can grow at 37 °C, is able to assimilate aromatic hydrocarbons (toluene, mineral oil, n-hexadecane), and shows abundant growth with selected neurotransmitters (acetylcholine, gamma-aminobutyric acid, glycine, glutamate, and dopamine) as sole carbon sources. We have for the first time demonstrated the effect of E. dermatitidis on neuroblastoma cell model SH-SY5Y. Aqueous and organic extracts of E. dermatitidis biomass reduced SH-SY5Y viability by 51% and 37%, respectively. Melanized extracellular vesicles (EVs) prepared from this strain reduced viability of the SH-SY5Y to 21%, while non-melanized EVs were considerably less neurotoxic (79% viability). We also demonstrated direct interactions of E. dermatitidis with SH-SY5Y by scanning electron and confocal fluorescence microscopy. The observed invasion and penetration of neuroblastoma cells by E. dermatitidis hyphae presumably causes the degradation of most neuroblastoma cells in only three days. This may represent a so far unknown indirect or direct cause for the development of some neurodegenerative diseases such as Alzheimer's.


Subject(s)
Cell Death/physiology , Exophiala/pathogenicity , Neuroblastoma/microbiology , Humans
5.
Behav Neurol ; 2019: 2909168, 2019.
Article in English | MEDLINE | ID: mdl-30774737

ABSTRACT

Two clinically distinct diseases, amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), have recently been classified as two extremes of the FTD/ALS spectrum. The neuropathological correlate of FTD is frontotemporal lobar degeneration (FTLD), characterized by tau-, TDP-43-, and FUS-immunoreactive neuronal inclusions. An earlier discovery that a hexanucleotide repeat expansion mutation in chromosome 9 open reading frame 72 (C9orf72) gene causes ALS and FTD established a special subtype of ALS and FTLD with TDP-43 pathology (C9FTD/ALS). Normal individuals carry 2-10 hexanucleotide GGGGCC repeats in the C9orf72 gene, while more than a few hundred repeats represent a risk for ALS and FTD. The proposed molecular mechanisms by which C9orf72 repeat expansions induce neurodegenerative changes are C9orf72 loss-of-function through haploinsufficiency, RNA toxic gain-of-function, and gain-of-function through the accumulation of toxic dipeptide repeat proteins. However, many more cellular processes are affected by pathological processes in C9FTD/ALS, including nucleocytoplasmic transport, RNA processing, normal function of nucleolus, formation of membraneless organelles, translation, ubiquitin proteasome system, Notch signalling pathway, granule transport, and normal function of TAR DNA-binding protein 43 (TDP-43). Although the exact molecular mechanisms through which C9orf72 repeat expansions account for neurodegeneration have not been elucidated, some potential therapeutics, such as antisense oligonucleotides targeting hexanucleotide GGGGCC repeats in mRNA, were successful in preclinical trials and are awaiting phase 1 clinical trials. In this review, we critically discuss each proposed mechanism and provide insight into the most recent studies aiming to elucidate the molecular underpinnings of C9FTD/ALS.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , C9orf72 Protein/genetics , DNA Repeat Expansion/genetics , Frontotemporal Dementia/genetics , Pick Disease of the Brain/genetics , Animals , Dipeptides/genetics , Humans , Neurodegenerative Diseases/genetics
6.
Brain ; 140(1): 13-26, 2017 01.
Article in English | MEDLINE | ID: mdl-27497493

ABSTRACT

Amyotrophic lateral sclerosis and frontotemporal lobar degeneration are two ends of a phenotypic spectrum of disabling, relentlessly progressive and ultimately fatal diseases. A key characteristic of both conditions is the presence of TDP-43 (encoded by TARDBP) or FUS immunoreactive cytoplasmic inclusions in neuronal and glial cells. This cytoplasmic mislocalization of otherwise predominantly nuclear RNA binding proteins implies a perturbation of the nucleocytoplasmic shuttling as a possible event in the pathogenesis. Compromised nucleocytoplasmic shuttling has recently also been associated with a hexanucleotide repeat expansion mutation in C9orf72, which is the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal lobar degeneration, and leads to accumulation of cytoplasmic TDP-43 inclusions. Mutation in C9orf72 may disrupt nucleocytoplasmic shuttling on the level of C9ORF72 protein, the transcribed hexanucleotide repeat RNA, and/or dipeptide repeat proteins translated form the hexanucleotide repeat RNA. These defects of nucleocytoplasmic shuttling may therefore, constitute the common ground of the underlying disease mechanisms in different molecular subtypes of amyotrophic lateral sclerosis and frontotemporal lobar degeneration.


Subject(s)
Active Transport, Cell Nucleus , Amyotrophic Lateral Sclerosis/metabolism , Cell Nucleus/metabolism , DNA-Binding Proteins/metabolism , Frontotemporal Lobar Degeneration/metabolism , Proteins/metabolism , RNA-Binding Protein FUS/metabolism , C9orf72 Protein , Humans
7.
Sci Rep ; 6: 37054, 2016 11 14.
Article in English | MEDLINE | ID: mdl-27841308

ABSTRACT

S1 family of serine peptidases is the largest family of peptidases. They are specifically inhibited by the Kunitz/BPTI inhibitors. Kunitz domain is characterized by the compact 3D structure with the most important inhibitory loops for the inhibition of S1 peptidases. In the present study we analysed the action of site-specific positive selection and its impact on the structurally and functionally important parts of the snake venom Kunitz/BPTI family of proteins. By using numerous models we demonstrated the presence of large numbers of site-specific positively selected sites that can reach between 30-50% of the Kunitz domain. The mapping of the positively selected sites on the 3D model of Kunitz/BPTI inhibitors has shown that these sites are located in the inhibitory loops 1 and 2, but also in the Kunitz scaffold. Amino acid replacements have been found exclusively on the surface, and the vast majority of replacements are causing the change of the charge. The consequence of these replacements is the change in the electrostatic potential on the surface of the Kunitz/BPTI proteins that may play an important role in the precise targeting of these inhibitors into the active site of S1 family of serine peptidases.


Subject(s)
Models, Molecular , Reptilian Proteins/chemistry , Serine Proteinase Inhibitors/chemistry , Viper Venoms/chemistry , Viperidae , Animals , Protein Domains , Protein Structure, Secondary , Reptilian Proteins/genetics , Serine Proteinase Inhibitors/genetics , Viper Venoms/genetics
8.
J Cell Sci ; 128(22): 4151-9, 2015 Nov 15.
Article in English | MEDLINE | ID: mdl-26403203

ABSTRACT

Aberrant cytoplasmic aggregation of FUS, which is caused by mutations primarily in the C-terminal nuclear localisation signal, is associated with 3% of cases of familial amyotrophic lateral sclerosis (ALS). FUS aggregates are also pathognomonic for 10% of all frontotemporal lobar degeneration (FTLD) cases; however, these cases are not associated with mutations in the gene encoding FUS. This suggests that there are differences in the mechanisms that drive inclusion formation of FUS in ALS and FTLD. Here, we show that the C-terminal tyrosine residue at position 526 of FUS is crucial for normal nuclear import. This tyrosine is subjected to phosphorylation, which reduces interaction with transportin 1 and might consequentially affect the transport of FUS into the nucleus. Furthermore, we show that this phosphorylation can occur through the activity of the Src family of kinases. Our study implicates phosphorylation as an additional mechanism by which nuclear transport of FUS might be regulated and potentially perturbed in ALS and FTLD.


Subject(s)
RNA-Binding Protein FUS/metabolism , Tyrosine/metabolism , Active Transport, Cell Nucleus , Amino Acid Sequence , Amyotrophic Lateral Sclerosis/metabolism , Frontotemporal Lobar Degeneration/metabolism , HeLa Cells , Humans , Molecular Sequence Data , Phosphorylation , Tyrosine/genetics , beta Karyopherins/metabolism
9.
Neurobiol Aging ; 36(2): 1091-6, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25442110

ABSTRACT

The G4C2 hexanucleotide repeat expansion, located in the first intron of the C9ORF72 gene, represents a major genetic hallmark of amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Several hypotheses have been proposed on how the transcribed repeat RNA leads to the development of amyotrophic lateral sclerosis and frontotemporal lobar degeneration. However, despite their importance, factors affecting the transcription of expanded-repeat RNA are not well known. As transcription is dependent on the DNA containing the expanded repeats, it is crucial to understand its structure. G-quadruplexes are known to affect expression on the level of DNA, therefore whether they form on the expanded-repeat DNA constitutes an important biological question. Using nuclear magnetic resonance and circular dichroism spectroscopy we show that DNA G4C2 with varying number of repeats d(G4C2)n form planar guanine quartets characteristic of G-quadruplexes. Additionally, we show DNA G-quadruplexes can form inter- and intra-molecularly in either parallel or anti-parallel orientation, based on d(G4C2) sequence length. This potential structural heterogeneity of longer disease-relevant repeats should therefore be taken into account when studying their role in disease pathogenesis.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , DNA Repeat Expansion/genetics , Frontotemporal Lobar Degeneration/genetics , G-Quadruplexes , Proteins/genetics , C9orf72 Protein , Circular Dichroism , DNA/genetics , Humans , Introns/genetics , Magnetic Resonance Spectroscopy , RNA/genetics , Transcription, Genetic
10.
Nat Neurosci ; 14(4): 452-8, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21358640

ABSTRACT

TDP-43 is a predominantly nuclear RNA-binding protein that forms inclusion bodies in frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). The mRNA targets of TDP-43 in the human brain and its role in RNA processing are largely unknown. Using individual nucleotide-resolution ultraviolet cross-linking and immunoprecipitation (iCLIP), we found that TDP-43 preferentially bound long clusters of UG-rich sequences in vivo. Analysis of RNA binding by TDP-43 in brains from subjects with FTLD revealed that the greatest increases in binding were to the MALAT1 and NEAT1 noncoding RNAs. We also found that binding of TDP-43 to pre-mRNAs influenced alternative splicing in a similar position-dependent manner to Nova proteins. In addition, we identified unusually long clusters of TDP-43 binding at deep intronic positions downstream of silenced exons. A substantial proportion of alternative mRNA isoforms regulated by TDP-43 encode proteins that regulate neuronal development or have been implicated in neurological diseases, highlighting the importance of TDP-43 for the regulation of splicing in the brain.


Subject(s)
Alternative Splicing/genetics , Brain Chemistry/genetics , DNA-Binding Proteins/genetics , RNA Splicing/physiology , RNA, Messenger/metabolism , Cell Line , Cell Line, Tumor , DNA-Binding Proteins/physiology , Gene Expression Regulation/genetics , Humans , Protein Isoforms/genetics , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , RNA, Untranslated/genetics , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
11.
Brain ; 133(Pt 6): 1763-71, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20472655

ABSTRACT

Trans-activation response DNA-binding protein (TDP-43) accumulation is the major component of ubiquitinated protein inclusions found in patients with amyotrophic lateral sclerosis, and frontotemporal lobar degeneration with TDP-43 positive ubiquitinated inclusions, recently relabelled the 'TDP-43 proteinopathies'. TDP-43 is predominantly located in the nucleus, however, in disease it mislocalizes to the cytoplasm where it aggregates to form hallmark pathological inclusions. The identification of TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis cases confirms its pathogenic role; but it is wild-type TDP-43 that is deposited in the vast majority of TDP-43 proteinopathies, implicating other unknown factors for its mislocalization and aggregation. One such mechanism may be defective nuclear import of TDP-43 protein, as a disruption of its nuclear localization signal leads to mislocalization and aggregation of TDP-43 in the cytoplasm. In order to explore the factors that regulate the nuclear import of TDP-43, we used a small interfering RNA library to silence 82 proteins involved in nuclear transport and found that knockdowns of karyopherin-beta1 and cellular apoptosis susceptibility protein resulted in marked cytoplasmic accumulation of TDP-43. In glutathione S-transferase pull-down assays, TDP-43 bound to karyopherin-alphas, thereby confirming the classical nuclear import pathway for the import of TDP-43. Analysis of the expression of chosen nuclear import factors in post-mortem brain samples from patients with TDP-43 positive frontotemporal lobar degeneration, and spinal cord samples from patients with amyotrophic lateral sclerosis, revealed a considerable reduction in expression of cellular apoptosis susceptibility protein in frontotemporal lobar degeneration. We propose that cellular apoptosis susceptibility protein associated defective nuclear transport may play a mechanistic role in the pathogenesis of the TDP-43 positive frontotemporal lobar degeneration.


Subject(s)
Active Transport, Cell Nucleus/physiology , Cytoplasm/metabolism , DNA-Binding Proteins/metabolism , Frontotemporal Lobar Degeneration/metabolism , Aged , Amyotrophic Lateral Sclerosis/metabolism , Animals , Brain/metabolism , Cell Line , Cell Line, Tumor , Cellular Apoptosis Susceptibility Protein/metabolism , Female , Glutathione Transferase/metabolism , Humans , Male , Mice , Middle Aged , Signal Transduction/genetics , Spinal Cord/metabolism , alpha Karyopherins/metabolism , beta Karyopherins/metabolism
12.
FEBS Lett ; 547(1-3): 131-6, 2003 Jul 17.
Article in English | MEDLINE | ID: mdl-12860400

ABSTRACT

Snake venoms are rich sources of serine proteinase inhibitors that are members of the Kunitz/BPTI (bovine pancreatic trypsin inhibitor) family. However, only a few of their gene sequences have been determined from snakes. We therefore cloned the cDNAs for the trypsin and chymotrypsin inhibitors from a Vipera ammodytes venom gland cDNA library. Phylogenetic analysis of these and other snake Kunitz/BPTI homologs shows the presence of three clusters, where sequences cluster by functional role. Analysis of the nucleotide sequences from the snake Kunitz/BPTI family shows that positive Darwinian selection was operating on the highly conserved BPTI fold, indicating that this family evolved by gene duplication and rapid diversification.


Subject(s)
Aprotinin/genetics , Evolution, Molecular , Viperidae/genetics , Amino Acid Sequence , Animals , Base Sequence , Cloning, Molecular , DNA Primers , DNA, Complementary/genetics , Gene Library , Molecular Sequence Data , Phylogeny , Polymerase Chain Reaction , Sequence Alignment , Sequence Homology, Amino Acid , Viperidae/classification
SELECTION OF CITATIONS
SEARCH DETAIL