Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Publication year range
1.
Aquat Toxicol ; 262: 106644, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37549485

ABSTRACT

Although there is increasing concern about the toxicity of nanoplastics, the effects of nanoplastic exposure and subsequent recovery on immune responses, as well as antioxidant responses and gut microbiota, in crustaceans are rarely reported. In this study, the nonspecific immunity and antioxidant defense of Eriocheir sinensis were evaluated after acute exposure to various concentrations (0, 2.5, 5, 10 and 20 mg/L) of 75-nm polystyrene nanoplastics (PS-NPs) for 48 h, as well as after 7 days of recovery from the nanoplastic environment. The results showed that, after 48 h of exposure, nanoplastics were observed in the gills, hepatopancreas and gut. However, no nanoplastics were found in the gut after 7 days of recovery. Under nanoplastic-induced stress, Hc, Relish, proPO, and LITAF mRNA levels increased in the gills and hepatopancreas for 48 h. Expression of the myd88, Hc, Relish and proPO genes decreased in the gills during the 7-day recovery period. Exposure to nanoplastics for 48 h and recovery for 7 days significantly decreased the activities of lysozyme (LZM) alkaline phosphatase (AKP), total superoxide dismutase (SOD) and phenoloxidase (POD) and, glutathione peroxidase (GPX) in the hepatopancreas. Meanwhile, the relative abundance of pathogens exposed to 10 mg/L nanoplastics for 48 h increased at the species level, and these pathogens decreased significantly in the 7-day recovery period. These results suggested that exposure to nanoplastics for 48 h affected the activities of immune system enzymes and expression of immune-related genes in Eriocheir sinensis and altered the diversity and composition of their gut microbiota. E. sinensis could not recover from damage to the hepatopancreas within a 7-day recovery period. The results of this study provided insight into the effects of nanoplastics on crustaceans and it filled a gap in research on crustacean recovery after exposure to nanoplastics.


Subject(s)
Brachyura , Gastrointestinal Microbiome , Water Pollutants, Chemical , Animals , Antioxidants/metabolism , Polystyrenes/toxicity , Polystyrenes/metabolism , Water Pollutants, Chemical/toxicity , Immunity, Innate
2.
BMC Genomics ; 23(1): 578, 2022 Aug 11.
Article in English | MEDLINE | ID: mdl-35953779

ABSTRACT

Berberine hydrochloride is the main effective component of Coptis spp. used in Chinese herbal medicine and its underlying molecular mechanisms, responsible for inducing effects in crustacean species, are not fully understood. In this study, the molecular response of the crab Charybdis japonica to berberine hydrochloride exposure was studied using transcriptome sequencing. The survival rate, gene expression and activities of several immune enzymes were measured after berberine hydrochloride treatments, with or without injection of the pathogenic bacterium Aeromonas hydrophila. A total of 962 differentially expressed genes (464 up-regulated and 498 down-regulated) were observed during exposure to 100 mg/L of berberine hydrochloride and in the control group after 48 h. Enrichment analysis revealed that these genes are involved in metabolism, cellular processes, signal transduction and immune functions, indicating that exposure to berberine hydrochloride activated the immune complement system. This bioactive compound simultaneously activated fibrinogen beta (FGB), fibrinogen alpha (FGA), alpha-2-macroglobulin (A2M), kininogen (KNG), fibrinogen gamma chain (FGB), alpha-2-HS-glycoprotein (AHSG), caspase-8 (CASP8), cathepsin L (CTSL), adenylate cyclase 3 (Adcy3) and MMP1. Its action could significantly increase the survival rate of the crabs injected with A. hydrophila and promote the activity of LZM, Caspas8, FGA, ACP and AKP in the hepatopancreas. When A. hydrophila was added, the neutralization of 300 mg/L berberine hydrochloride maximized the activities of Caspas8, LZM, ACP and AKP. Our results provide a new understanding of the potential effects of berberine hydrochloride on the immune system mechanisms in crustaceans.


Subject(s)
Berberine , Brachyura , Animals , Berberine/pharmacology , Brachyura/genetics , Fibrinogen/pharmacology , Hepatopancreas , Immunity/genetics
3.
Asian Pac J Trop Biomed ; 1(1): 20-2, 2011 Jan.
Article in English | MEDLINE | ID: mdl-23569719

ABSTRACT

OBJECTIVE: To determine the major changes in the microstructure of Candida albicans (C. albicans) after treatment with Euphorbia hirta (E. hirta) L. leaf extract. METHODS: Transmission electron microscopy was used to study the ultrastructural changes caused by E. hirta extract on C. albicans cells at various exposure time. RESULTS: It was found that the main abnormalities were the alterations in morphology, lysis and complete collapse of the yeast cells after 36 h of exposure to the extract. Whereas the control cultures showed a typical morphology of Candida with a uniform central density, typically structured nucleus, and a cytoplasm with several elements of endomembrane system and enveloped by a regular, intact cell wall. CONCLUSIONS: The significant antifungal activity shown by this methanol extract of E. hirta L. suggests its potential against infections caused by C. albicans. The extract may be developed as an anticandidal agent.


Subject(s)
Candida albicans/drug effects , Euphorbia/chemistry , Plant Extracts/pharmacology , Plant Leaves/chemistry , Candida albicans/cytology , Microscopy, Electron, Transmission , Plant Extracts/chemistry
4.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-672811

ABSTRACT

Objective: To determine the major changes in the microstructure of Candida albicans (C. albicans) after treatment with Euphorbia hirta (E. hirta) L. leaf extract. Methods: Transmission electron microscopy was used to study the ultrastructural changes caused by E. hirta extract on C.albicans cells at various exposure time. Results: It was found that the main abnormalities were the alterations in morphology, lysis and complete collapse of the yeast cells after 36 h of exposure to the extract. Whereas the control cultures showed a typical morphology of Candida with a uniform central density, typically structured nucleus, and a cytoplasm with several elements of endomembrane system and enveloped by a regular, intact cell wall. Conclusions: The significant antifungal activity shown by this methanol extract of E. hirta L. suggests its potential against infections caused by C. albicans. The extract may be developed as an anticandidal agent.

5.
Article in English | WPRIM (Western Pacific) | ID: wpr-819501

ABSTRACT

OBJECTIVE@#To assess antioxidant activities of different parts of Euphorbia hirta (E. hirta), and to search for new sources of safe and inexpensive antioxidants.@*METHODS@#Samples of leaves, stems, flowers and roots from E. hirta were tested for total phenolic content, and flavonoids content and in vitro antioxidant activity by diphenyl-1-picrylhydrazyl (DPPH) assay and reducing power was measured using cyanoferrate method.@*RESULTS@#The leaves extract exhibited a maximum DPPH scavenging activity of (72.96±0.78)% followed by the flowers, roots and stems whose scavenging activities were (52.45±0.66)%, (48.59±0.97)%, and (44.42±0.94)%, respectively. The standard butylated hydroxytoluene (BHT) was (75.13±0.75)%. The IC(50) for leaves, flowers, roots, stems and BHT were 0.803, 0.972, 0.989, 1.358 and 0.794 mg/mL, respectively. The reducing power of the leaves extract was comparable with that of ascorbic acid and found to be dose dependent. Leaves extract had the highest total phenolic content [(206.17±1.95) mg GAE/g], followed by flowers, roots and stems extracts which were (117.08±3.10) mg GAE/g, (83.15±1.19) mg GAE/g, and (65.70±1.72) mg GAE/g, respectively. On the other hand, total flavonoids content also from leave had the highest value [(37.970±0.003) mg CEQ/g], followed by flowers, roots and stems extracts which were (35.200±0.002) mg CEQ/g, (24.350±0.006) mg CEQ/g, and (24.120±0.004) mg CEQ/g, respectively. HPTLC bioautography analysis of phenolic and antioxidant substance revealed phenolic compounds. Phytochemical screening of E. hirta leaf extract revealed the presence of reducing sugars, terpenoids, alkaloids, steroids, tannins, flavanoids and phenolic compounds.@*CONCLUSIONS@#These results suggeste that E. hirta have strong antioxidant potential. Further study is necessary for isolation and characterization of the active antioxidant agents, which can be used to treat various oxidative stress-related diseases.


Subject(s)
Antioxidants , Pharmacology , Biphenyl Compounds , Metabolism , Dose-Response Relationship, Drug , Euphorbia , Chemistry , Flavonoids , Phenols , Picrates , Metabolism , Plant Extracts , Pharmacology
6.
Molecules ; 15(9): 6008-18, 2010 Aug 31.
Article in English | MEDLINE | ID: mdl-20877206

ABSTRACT

The antimicrobial activities of the methanolic extracts of Euphorbia hirta L leaves, flowers, stems and roots were evaluated against some medically important bacteria and yeast using the agar disc diffusion method. Four Gram positive (Staphylococcus aureus, Micrococcus sp., Bacillus subtilis and Bacillus thuringensis), four Gram negative (Escherichia coli, Klebsiella pneumonia, Salmonella typhi and P. mirabilis) and one yeast (Candida albicans) species were screened. Inhibition zones ranged between 16-29 mm. Leaves extract inhibited the growth of all tested microorganisms with large zones of inhibition, followed by that of flowers, which also inhibited all the bacteria except C. albicans. The most susceptible microbes to all extracts were S. aureus and Micrococcus sp. Root extract displayed larger inhibition zones against Gram positive bacteria than Gram negative bacteria and had larger inhibition zones compared to stem extract. The lowest MIC values were obtained with E. coli and C. albicans (3.12 mg/mL), followed by S. aureus (12.50 mg/mL) and P. mirabilis (50.00 mg/mL). All the other bacteria had MIC values of 100.00 mg/mL. Scanning Electron Microscopic (SEM) studies revealed that the cells exposed to leaf extract displayed a rough surface with multiple blends and invaginations which increased with increasing time of treatment, and cells exposed to leaf extract for 36 h showed the most damage, with abundant surface cracks which may be related to final cell collapse and loss of function. Time-kill assay of C. albicans indicated a primarily fungicidal effect at 1- and 2-fold MIC. E. hirta extracts had LC(50) values of 0.71, 0.66, 0.41 and 0.03 mg/mL for stems, leaves, roots and flowers, respectively against Artemia salina. Hence, these plants can be used to discover new bioactive natural products that may serve as leads in the development of new pharmaceuticals.


Subject(s)
Anti-Bacterial Agents/isolation & purification , Antifungal Agents/isolation & purification , Euphorbia/chemistry , Plant Extracts/pharmacology , Plant Structures/chemistry , Animals , Artemia , Bacteria/drug effects , Candida albicans/drug effects , Methanol , Microbial Sensitivity Tests , Toxicity Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...