Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
Add more filters










Publication year range
2.
J Phys Chem Lett ; 15(22): 5947-5953, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38810233

ABSTRACT

The past decade has witnessed great progress in predicting and synthesizing polyhydrides that exhibit superconductivity under pressure. Dopants allow these compounds to become metals at pressures lower than those required to metallize elemental hydrogen. Here, we show that by combining the fundamental planetary building blocks of molecular hydrogen and ammonia, conventional superconducting compounds can be formed at high pressure. Through extensive theoretical calculations, we predict metallic metastable structures with NHn (n = 10, 11, 24) stoichiometries that are based on NH4+ superalkali cations and complex hydrogenic lattices. The hydrogen atoms in the molecular cation contribute to the superconducting mechanism, and the estimated superconducting critical temperatures, Tc's, are comparable to the highest values computed for the alkali metal polyhydrides. The largest calculated (isotropic Eliashberg) Tc is ∼180 K for Pnma-NH10 at 300 GPa. Our results suggest that other molecular cations can be mixed with hydrogen under pressure, yielding superconducting compounds.

3.
ACS Appl Mater Interfaces ; 16(14): 17857-17869, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38533949

ABSTRACT

Electron-rich organocerium complexes (C5Me4H)3Ce and [(C5Me5)2Ce(ortho-oxa)], with redox potentials E1/2 = -0.82 V and E1/2 = -0.86 V versus Fc/Fc+, respectively, were reacted with fullerene (C60) in different stoichiometries to obtain molecular materials. Structurally characterized cocrystals: [(C5Me4H)3Ce]2·C60 (1) and [(C5Me5)2Ce(ortho-oxa)]3·C60 (2) of C60 with cerium-based, molecular rare earth precursors are reported for the first time. The extent of charge transfer in 1 and 2 was evaluated using a series of physical measurements: FT-IR, Raman, solid-state UV-vis-NIR spectroscopy, X-ray absorption near-edge structure (XANES) spectroscopy, and magnetic susceptibility measurements. The physical measurements indicate that 1 and 2 comprise the cerium(III) oxidation state, with formally neutral C60 as a cocrystal in both cases. Pressure-dependent periodic density functional theory calculations were performed to study the electronic structure of 1. Inclusion of a Hubbard-U parameter removes Ce f states from the Fermi level, opens up a band gap, and stabilizes FM/AFM magnetic solutions that are isoenergetic because of the large distances between the Ce(III) cations. The electronic structure of this strongly correlated Mott insulator-type system is reminiscent of the well-studied Ce2O3.

4.
Nature ; 625(7993): 66-73, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38172364

ABSTRACT

The need for improved functionalities in extreme environments is fuelling interest in high-entropy ceramics1-3. Except for the computational discovery of high-entropy carbides, performed with the entropy-forming-ability descriptor4, most innovation has been slowly driven by experimental means1-3. Hence, advancement in the field needs more theoretical contributions. Here we introduce disordered enthalpy-entropy descriptor (DEED), a descriptor that captures the balance between entropy gains and enthalpy costs, allowing the correct classification of functional synthesizability of multicomponent ceramics, regardless of chemistry and structure. To make our calculations possible, we have developed a convolutional algorithm that drastically reduces computational resources. Moreover, DEED guides the experimental discovery of new single-phase high-entropy carbonitrides and borides. This work, integrated into the AFLOW computational ecosystem, provides an array of potential new candidates, ripe for experimental discoveries.

6.
Angew Chem Int Ed Engl ; 62(48): e202310802, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-37796438

ABSTRACT

Early quantum mechanical models suggested that pressure drives solids towards free-electron metal behavior where the ions are locked into simple close-packed structures. The prediction and subsequent discovery of high-pressure electrides (HPEs), compounds assuming open structures where the valence electrons are localized in interstitial voids, required a paradigm shift. Our quantum chemical calculations on the iconic insulating Na-hP4 HPE show that increasing density causes a 3s→3pd electronic transition due to Pauli repulsion between the 1s2s and 3s states, and orthogonality of the 3pd states to the core. The large lobes of the resulting Na-pd hybrid orbitals point towards the center of an 11-membered penta-capped trigonal prism and overlap constructively, forming multicentered bonds, which are responsible for the emergence of the interstitial charge localization in Na-hP4. These multicentered bonds facilitate the increased density of this phase, which is key for its stabilization under pressure.

7.
Nat Chem ; 15(11): 1559-1568, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37814114

ABSTRACT

The convergent positioning of functional groups in biomacromolecules leads to good binding, catalytic and transport capabilities. Synthetic frameworks capable of convergently locking functional groups with minimized conformational uncertainty-leading to similar properties-are highly desirable but rare. Here we report C5-symmetric aromatic pentaamide macrocycles synthesized in one pot from the corresponding monomers. Their crystal structures reveal a star-shaped, fully constrained backbone that causes ten alternating NH/CH hydrogen-bond donors and five large amide dipoles to orient towards the centre of the macrocycle. With a highly electropositive cavity in a high-energy unbound state, the macrocycles bind anions in a 1:1 stoichiometry in solution, with high affinity for halides and very high affinity for oxoanions. We demonstrate that such macrocycles are able to transport anions across lipid bilayers with a high chloride selectivity and restore the depleted airway surface liquid of cystic fibrosis airway cell cultures.


Subject(s)
Macrocyclic Compounds , Macrocyclic Compounds/chemistry , Crystallography, X-Ray , Molecular Conformation , Amides/chemistry , Anions/chemistry
8.
J Chem Theory Comput ; 19(21): 7960-7971, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37856841

ABSTRACT

Metastable materials are abundant in nature and technology, showcasing remarkable properties that inspire innovative materials design. However, traditional crystal structure prediction methods, which rely solely on energetic factors to determine a structure's fitness, are not suitable for predicting the vast number of potentially synthesizable phases that represent a local minimum corresponding to a state in thermodynamic equilibrium. Here, we present a new approach for the prediction of metastable phases with specific structural features and interface this method with the XtalOpt evolutionary algorithm. Our method relies on structural features that include the local crystalline order (e.g, the coordination number or chemical environment), and symmetry (e.g, Bravais lattice and space group) to filter the breeding pool of an evolutionary crystal structure search. The effectiveness of this approach is benchmarked on three known metastable systems: XeN8, with a two-dimensional polymeric nitrogen sublattice, brookite TiO2, and a high pressure BaH4 phase, which was recently characterized. Additionally, a newly predicted metastable melaminate salt, P1̅ WC3N6, was found to possess an energy that is lower than that of two phases proposed in a recent computational study. The method presented here could help in identifying the structures of compounds that have already been synthesized, and in developing new synthesis targets with desired properties.

9.
J Am Chem Soc ; 145(39): 21612-21622, 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37734006

ABSTRACT

The physical properties of solid-state materials are closely tied to their crystal structure, yet our understanding of how competing structural arrangements energetically compare is limited. In this work, we explore how small differences in composition affect the structure in the La(AuxGe1-x)2 series of compounds, which comprises four unique structure types between LaGe2 and LaAu2. This family includes the previously unknown AlB2-type compound with stoichiometry La(Au0.375Ge0.625)2 as well as La(Au0.25Ge0.75)2, an intergrowth of the AlB2 and ThSi2 structure types. We then study the chemical forces driving the structure changes and use phonon band structure calculations and DFT-Chemical Pressure to evaluate atomic-size effects. These calculations show that the parent AlB2 structure type is disfavored in Au-rich compounds due to soft atomic motions along the c axis. The instability of AlB2-type LaAuGe is confirmed by the presence of imaginary modes in the phonon band structure that correspond to a "puckering" of the hexagonal AlB2-type lattice, resulting in the experimentally observed LiGaGe structure type. The impact of size effects is less clear for Au-poor compositions; instead, twisting the AlB2 structure type to form the ThSi2 type opens a pseudogap at the Fermi level in the electronic density of states. This investigation demonstrates how crystal structure in solid-state materials can be compositionally tuned based on balancing size and electronics when multiple structure types are in close thermodynamic competition.

11.
J Am Chem Soc ; 145(18): 9959-9964, 2023 May 10.
Article in English | MEDLINE | ID: mdl-37104819

ABSTRACT

Here we report the design and synthesis of a new class of bioorthogonal reagents called hydrazonyl sultones (HS) that serve as stable tautomers of highly reactive nitrile imines (NI). Compared to the photogenerated NI, HS display a broad range of aqueous stability and tunable reactivity in a 1,3-dipolar cycloaddition reaction, depending on substituents, sultone ring structure, and solvent conditions. DFT calculations have provided vital insights into the HS → NI tautomerism, including a base-mediated anionic tautomerization pathway and a small activation barrier. Comparative kinetic analysis of tetrazole vs HS-mediated cycloadditions reveals that a tiny fraction of the reactive NI (∼15 ppm) is present in the tautomeric mixture, underpinning the extraordinary stability of the six-membered HS. We further demonstrate the utilities of HS in selective modification of bicyclo[6.1.0]non-4-yn-9-ylmethanol (BCN)-lysine-containing nanobodies in phosphate buffered saline and fluorescent labeling of a BCN-lysine-encoded transmembrane glucagon receptor on live cells.

13.
J Am Chem Soc ; 145(3): 1696-1706, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36622785

ABSTRACT

Inspired by the synthesis of XB3C3 (X = Sr, La) compounds in the bipartite sodalite clathrate structure, density functional theory (DFT) calculations are performed on members of this family containing up to two different metal atoms. A DFT-chemical pressure analysis on systems with X = Mg, Ca, Sr, Ba reveals that the size of the metal cation, which can be tuned to stabilize the B-C framework, is key for their ambient-pressure dynamic stability. High-throughput density functional theory calculations on 105 Pm3̅ symmetry XYB6C6 binary-guest compounds (where X, Y are electropositive metal atoms) find 22 that are dynamically stable at 1 atm, expanding the number of potentially synthesizable phases by 19 (18 metals and 1 insulator). The density of states at the Fermi level and superconducting critical temperature, Tc, can be tuned by changing the average oxidation state of the metal atoms, with Tc being highest for an average valence of +1.5. KPbB6C6, with an ambient-pressure Eliashberg Tc of 88 K, is predicted to possess the highest Tc among the studied Pm3̅n XB3C3 or Pm3̅ XYB6C6 phases, and calculations suggest it may be synthesized using high-pressure high-temperature techniques and then quenched to ambient conditions.

14.
Angew Chem Int Ed Engl ; 61(50): e202213467, 2022 12 12.
Article in English | MEDLINE | ID: mdl-36259360

ABSTRACT

Cooperativity plays a critical role in self-assembly and molecular recognition. A rigid aromatic oligoamide macrocycle with a cyclodirectional backbone binds with DABCO-based cationic guests in a 2 : 1 ratio in high affinities (Ktotal ≈1013  M-2 ) in the highly polar DMF. The host-guest binding also exhibits exceptionally strong positive cooperativity quantified by interaction factors α that are among the largest for synthetic host-guest systems. The unusually strong positive cooperativity, revealed by isothermal titration calorimetry (ITC) and fully corroborated by mass spectrometry, NMR and computational studies, is driven by guest-induced stacking of the macrocycles and stabilization from the alkyl end chains of the guests, interactions that appear upon binding the second macrocycle. With its tight binding driven by extraordinary positive cooperativity, this host-guest system provides a tunable platform for studying molecular interactions and for constructing stable supramolecular assemblies.


Subject(s)
Calorimetry , Magnetic Resonance Spectroscopy
15.
Angew Chem Int Ed Engl ; 61(38): e202207589, 2022 Sep 19.
Article in English | MEDLINE | ID: mdl-35895979

ABSTRACT

The high critical superconducting temperatures (Tc s) of metal hydride phases with clathrate-like hydrogen networks have generated great interest. Herein, we employ the Density Functional Theory-Chemical Pressure (DFT-CP) method to explain why certain electropositive elements adopt these structure types, whereas others distort the hydrogenic lattice, thereby decreasing the Tc . The progressive opening of the H24 polyhedra in MH6 phases is shown to arise from internal pressures exerted by large metal atoms, some of which may favor an even higher hydrogen content that loosens the metal atom coordination environments. The stability of the LaH10 and LaBH8 phases is tied to stuffing of their shared hydrogen network with either additional hydrogen or boron atoms. The predictive capabilities of DFT-CP are finally applied to the Y-X-H system to identify possible ternary additions yielding a superconducting phase stable to low pressures.

16.
J Chem Phys ; 156(21): 210401, 2022 06 07.
Article in English | MEDLINE | ID: mdl-35676153
17.
Angew Chem Int Ed Engl ; 61(32): e202205129, 2022 Aug 08.
Article in English | MEDLINE | ID: mdl-35674197

ABSTRACT

A metallic, covalently bonded carbon allotrope is predicted via first principles calculations. It is composed of an sp3 carbon framework that acts as a diamond anvil cell by constraining the distance between parallel cis-polyacetylene chains. The distance between these sp2 carbon atoms renders the phase metallic, and yields two well-nested nearly parallel bands that cross the Fermi level. Calculations show this phase is a conventional superconductor, with the motions of the sp2 carbons being key contributors to the electron-phonon coupling. The sp3 carbon atoms impart superior mechanical properties, with a predicted Vickers hardness of 48 GPa. This phase, metastable at ambient conditions, could be made by on-surface polymerization of graphene nanoribbons, followed by pressurization of the resulting 2D sheets. A family of multifunctional materials with tunable superconducting and mechanical properties could be derived from this phase by varying the sp2 versus sp3 carbon content, and by doping.

18.
Phys Chem Chem Phys ; 24(7): 4485-4492, 2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35113111

ABSTRACT

The adsorption orientation of molecules on surfaces influences their reactivity, but it is still challenging to tailor the interactions that govern their orientation. Here, we investigate how the substituent and the surface structure alter the adsorption orientation of halogenated benzene molecules from parallel to tilted relative to the surface plane. The deviation of the parallel orientation of bromo-, chloro-, and fluorobenzene molecules adsorbed on Cu(111) and Cu(110) surfaces is determined, utilising the surface selection rule in reflection-absorption infrared spectroscopy. On Cu(111), all three halogenated molecules are adsorbed with their molecular plane almost parallel to the surface at low coverages. However, they are tilted at higher coverages; yet, the threshold coverages differ. On Cu(110), merely bromo- and chlorobenzene follow this trend, albeit with a lower threshold for both. In contrast, fluorobenzene molecules are tilted already at low coverages. The substantial influence of the halogen atom and the surface structure on the adsorption orientation, resulting from an interplay of molecule-molecule and molecule-surface interactions, is highly relevant for reactivity confined to two dimensions.

19.
J Am Chem Soc ; 144(1): 57-62, 2022 01 12.
Article in English | MEDLINE | ID: mdl-34964645

ABSTRACT

Here we report the design of a superfast bioorthogonal ligation reactant pair comprising a sterically shielded, sulfonated tetrazole and bicyclo[6.1.0]non-4-yn-9-ylmethanol (BCN). The design involves placing a pair of water-soluble N-sulfonylpyrrole substituents at the C-phenyl ring of diphenyltetrazoles to favor the photoinduced cycloaddition reaction over the competing nucleophilic additions. First-principles computations provide vital insights into the origin of the tetrazole-BCN cycloaddition's superior kinetics compared to the tetrazole-spirohexene cycloaddition. The tetrazole-BCN cycloaddition also enabled rapid bioorthogonal labeling of glucagon receptors on live cells in as little as 15 s.


Subject(s)
Cycloaddition Reaction
20.
J Phys Condens Matter ; 34(18)2022 Mar 03.
Article in English | MEDLINE | ID: mdl-34544070

ABSTRACT

Designing materials with advanced functionalities is the main focus of contemporary solid-state physics and chemistry. Research efforts worldwide are funneled into a few high-end goals, one of the oldest, and most fascinating of which is the search for an ambient temperature superconductor (A-SC). The reason is clear: superconductivity at ambient conditions implies being able to handle, measure and access a single, coherent, macroscopic quantum mechanical state without the limitations associated with cryogenics and pressurization. This would not only open exciting avenues for fundamental research, but also pave the road for a wide range of technological applications, affecting strategic areas such as energy conservation and climate change. In this roadmap we have collected contributions from many of the main actors working on superconductivity, and asked them to share their personal viewpoint on the field. The hope is that this article will serve not only as an instantaneous picture of the status of research, but also as a true roadmap defining the main long-term theoretical and experimental challenges that lie ahead. Interestingly, although the current research in superconductor design is dominated by conventional (phonon-mediated) superconductors, there seems to be a widespread consensus that achieving A-SC may require different pairing mechanisms.In memoriam, to Neil Ashcroft, who inspired us all.

SELECTION OF CITATIONS
SEARCH DETAIL
...