Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 13(1): 1004, 2022 03 04.
Article in English | MEDLINE | ID: mdl-35246524

ABSTRACT

As whole-genome sequencing (WGS) becomes the gold standard tool for studying population genomics and medical applications, data on diverse non-European and admixed individuals are still scarce. Here, we present a high-coverage WGS dataset of 1,171 highly admixed elderly Brazilians from a census-based cohort, providing over 76 million variants, of which ~2 million are absent from large public databases. WGS enables identification of ~2,000 previously undescribed mobile element insertions without previous description, nearly 5 Mb of genomic segments absent from the human genome reference, and over 140 alleles from HLA genes absent from public resources. We reclassify and curate pathogenicity assertions for nearly four hundred variants in genes associated with dominantly-inherited Mendelian disorders and calculate the incidence for selected recessive disorders, demonstrating the clinical usefulness of the present study. Finally, we observe that whole-genome and HLA imputation could be significantly improved compared to available datasets since rare variation represents the largest proportion of input from WGS. These results demonstrate that even smaller sample sizes of underrepresented populations bring relevant data for genomic studies, especially when exploring analyses allowed only by WGS.


Subject(s)
Genomics , Metagenomics , Aged , Brazil/epidemiology , Genome, Human/genetics , Genomics/methods , Humans , Polymorphism, Single Nucleotide , Whole Genome Sequencing
3.
Hum Mutat ; 43(8): 976-985, 2022 08.
Article in English | MEDLINE | ID: mdl-34882898

ABSTRACT

The success of many clinical, association, or population genetics studies critically relies on properly performed variant calling step. The variety of modern genomics protocols, techniques, and platforms makes our choices of methods and algorithms difficult and there is no "one size fits all" solution for study design and data analysis. In this review, we discuss considerations that need to be taken into account while designing the study and preparing for the experiments. We outline the variety of variant types that can be detected using sequencing approaches and highlight some specific requirements and basic principles of their detection. Finally, we cover interesting developments that enable variant calling for a broad range of applications in the genomics field. We conclude by discussing technological and algorithmic advances that have the potential to change the ways of calling DNA variants in the nearest future.


Subject(s)
High-Throughput Nucleotide Sequencing , Software , Algorithms , Genomics/methods , High-Throughput Nucleotide Sequencing/methods , Humans , Polymorphism, Single Nucleotide , Sequence Analysis, DNA/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...