Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
J Med Radiat Sci ; 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38894671

ABSTRACT

INTRODUCTION: The aim was to determine which immobilisation device improved inter-fraction reproducibly of pelvic tilt and required the least pre-treatment setup and planning interventions. METHODS: Sixteen patients were retrospectively reviewed, eight immobilised using the BodyFIX system (BodyFIX®, Elekta, Stockholm, Sweden) and eight using the Butterfly Board (BB) (Bionix Radiation Therapy, Toledo, OH, USA). The daily pre-treatment images were reviewed to assess setup variations between each patient and groups for pelvic tilt, pubic symphysis, sacral promontory and the fifth lumbar spine (L5). RESULTS: Compared with the planning CT, pelvic tilt for most patients was within ±2° using the BodyFIX and ± 4° for the BB. The Butterfly Board had a slightly higher variance both for patient-to-patient (standard deviation of the systematic error) and day-to-day error (standard deviation of the random error). Variance in position between individual patients and the two stabilisation devices were minimal in the anterior-posterior (AP) and superior-inferior (SI) direction for the pubic symphysis, sacral promontory and L5 spine. Re-imaged fractions due to pelvic tilt reduced by about half when BodyFIX was used (39.1% BB, 19.4% BodyFIX). One patient treated with the BB required a re-scan for pelvic tilt. Three patients required a re-scan for body contour variations (two using BodyFIX and one with the BB). CONCLUSIONS: BodyFIX resulted in a more accurate inter-fraction setup and efficient treatment and is used as the standard stabilisation for gynaecological patients at our centre. It reduced the pelvic tilt variance and reduced the need for re-imaging pre-treatment by half.

2.
Trials ; 24(1): 132, 2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36814310

ABSTRACT

BACKGROUND: Deep inspiration breath hold (DIBH) reduces radiotherapy cardiac dose for left-sided breast cancer patients. The primary aim of the BRAVEHeart (Breast Radiotherapy Audio Visual Enhancement for sparing the Heart) trial is to assess the accuracy and usability of a novel device, Breathe Well, for DIBH guidance for left-sided breast cancer patients. Breathe Well will be compared to an adapted widely available monitoring system, the Real-time Position Management system (RPM). METHODS: BRAVEHeart is a single institution prospective randomised trial of two DIBH devices. BRAVEHeart will assess the DIBH accuracy for Breathe Well and RPM during left-sided breast cancer radiotherapy. After informed consent has been obtained, 40 patients will be randomised into two equal groups, the experimental arm (Breathe Well) and the control arm (RPM with in-house modification of an added patient screen). The primary hypothesis of BRAVEHeart is that the accuracy of Breathe Well in maintaining the position of the chest during DIBH is superior to the RPM system. Accuracy will be measured by comparing chest wall motion extracted from images acquired of the treatment field during breast radiotherapy for patients treated using the Breathe Well system and those using the RPM system. DISCUSSION: The Breathe Well device uses a depth camera to monitor the chest surface while the RPM system monitors a block on the patient's abdomen. The hypothesis of this trial is that the chest surface is a better surrogate for the internal chest wall motion used as a measure of treatment accuracy. The Breathe Well device aims to deliver an easy-to-use implementation of surface monitoring. The findings from the study will help inform the technology choice for other centres performing DIBH. TRIAL REGISTRATION: ClinicalTrials.gov NCT02881203 . Registered on 26 August 2016.


Subject(s)
Breast Neoplasms , Unilateral Breast Neoplasms , Humans , Female , Breath Holding , Unilateral Breast Neoplasms/radiotherapy , Prospective Studies , Heart , Organs at Risk
3.
J Appl Clin Med Phys ; 22(3): 176-185, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33634952

ABSTRACT

The use of trajectory log files for routine patient quality assurance is gaining acceptance. Such use requires the validation of the trajectory log itself. However, the accurate localization of a multileaf collimator (MLC) leaf while it is in motion remains a challenging task. We propose an efficient phantom-less technique using the EPID to verify the dynamic MLC positions with high accuracy. Measurements were made on four Varian TrueBeams equipped with M120 MLCs. Two machines were equipped with the S1000 EPID; two were equipped with the S1200 EPID. All EPIDs were geometrically corrected prior to measurements. Dosimetry mode EPID measurements were captured by a frame grabber card directly linked to the linac. All leaf position measurements were corrected both temporally and geometrically. The readout latency of each panel, as a function of pixel row, was determined using a 40 × 1.0 cm2 sliding window (SW) field moving at 2.5 cm/s orthogonal to the row readout direction. The latency of each panel type was determined by averaging the results of two panels of the same type. Geometric correction was achieved by computing leaf positions with respect to the projected isocenter position as a function of gantry angle. This was determined by averaging the central axis position of fields at two collimator positions of 90° and 270°. The radiological to physical leaf end position was determined by comparison of the measured gap with that determined using a feeler gauge. The radiological to physical leaf position difference was found to be 0.1 mm. With geometric and latency correction, the proposed method was found to be improve the ability to detect dynamic MLC positions from 1.0 to 0.2 mm for all leaves. Latency and panel residual geometric error correction improve EPID-based MLC position measurement. These improvements provide for the first time a trajectory log QA procedure.


Subject(s)
Particle Accelerators , Radiotherapy, Intensity-Modulated , Humans , Phantoms, Imaging , Radiometry
4.
Med Phys ; 48(3): 953-964, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33354787

ABSTRACT

PURPOSE: In multileaf collimator (MLC) tracking, the MLC positions from the original treatment plan are continuously modified to account for intrafraction tumor motion. As the treatment is adapted in real time, there is additional risk of delivery errors which cannot be detected using traditional pretreatment dose verification. The purpose of this work is to develop a system for real-time geometric verification of MLC tracking treatments using an electronic portal imaging device (EPID). METHODS: MLC tracking was utilized during volumetric modulated arc therapy (VMAT). During these deliveries, treatment beam images were taken at 9.57 frames per second using an EPID and frame grabber computer. MLC positions were extracted from each image frame and used to assess delivery accuracy using three geometric measures: the location, size, and shape of the radiation field. The EPID-measured field location was compared to the tumor motion measured by implanted electromagnetic markers. The size and shape of the beam were compared to the size and shape from the original treatment plan, respectively. This technique was validated by simulating errors in phantom test deliveries and by comparison between EPID measurements and treatment log files. The method was applied offline to images acquired during the LIGHT Stereotactic Ablative Body Radiotherapy (SABR) clinical trial, where MLC tracking was performed for 17 lung cancer patients. The EPID-based verification results were subsequently compared to post-treatment dose reconstruction. RESULTS: Simulated field location errors were detected during phantom validation tests with an uncertainty of 0.28 mm (parallel to MLC motion) and 0.38 mm (perpendicular), expressed as a root-mean-square error (RMSError ). For simulated field size errors, the RMSError was 0.47 cm2 and field shape changes were detected for random errors with standard deviation ≥ 2.5 mm. For clinical lung SABR deliveries, field location errors of 1.6 mm (parallel MLC motion) and 4.9 mm (perpendicular) were measured (expressed as a full-width-half-maximum). The mean and standard deviation of the errors in field size and shape were 0.0 ± 0.3 cm2 and 0.3 ± 0.1 (expressed as a translation-invariant normalized RMS). No correlation was observed between geometric errors during each treatment fraction and dosimetric errors in the reconstructed dose to the target volume for this cohort of patients. CONCLUSION: A system for real-time delivery verification has been developed for MLC tracking using time-resolved EPID imaging. The technique has been tested offline in phantom-based deliveries and clinical patient deliveries and was used to independently verify the geometric accuracy of the MLC during MLC tracking radiotherapy.


Subject(s)
Radiotherapy, Intensity-Modulated , Electrical Equipment and Supplies , Humans , Particle Accelerators , Phantoms, Imaging , Radiometry , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted
5.
Phys Med Biol ; 65(23): 235040, 2020 12 02.
Article in English | MEDLINE | ID: mdl-33263318

ABSTRACT

PURPOSE: The purpose of this work was to report on the geometric uncertainty for patients treated with multi-leaf collimator (MLC) tracking for lung SABR to verify the accuracy of the system. METHODS: Seventeen patients were treated as part of the MLC tracking for lung SABR clinical trial using electromagnetic beacons implanted around the tumor acting as a surrogate for target motion. Sources of uncertainties evaluated in the study included the surrogate-target positional uncertainty, the beam-surrogate tracking uncertainty, the surrogate localization uncertainty, and the target delineation uncertainty. Probability density functions (PDFs) for each source of uncertainty were constructed for the cohort and each patient. The total PDFs was computed using a convolution approach. The 95% confidence interval (CI) was used to quantify these uncertainties. RESULTS: For the cohort, the surrogate-target positional uncertainty 95% CIs were ±2.5 mm (-2.0/3.0 mm) in left-right (LR), ±3.0 mm (-1.6/4.5 mm) in superior-inferior (SI) and ±2.0 mm (-1.8/2.1 mm) in anterior-posterior (AP). The beam-surrogate tracking uncertainty 95% CIs were ±2.1 mm (-2.1/2.1 mm) in LR, ±2.8 mm (-2.8/2.7 mm) in SI and ±2.1 mm (-2.1/2.0 mm) in AP directions. The surrogate localization uncertainty minimally impacted the total PDF with a width of ±0.6 mm. The target delineation uncertainty distribution 95% CIs were ±5.4 mm. For the total PDF, the 95% CIs were ±5.9 mm (-5.8/6.0 mm) in LR, ±6.7 mm (-5.8/7.5 mm) in SI and ±6.0 mm (-5.5/6.5 mm) in AP. CONCLUSION: This work reports the geometric uncertainty of MLC tracking for lung SABR by accounting for the main sources of uncertainties that occurred during treatment. The overall geometric uncertainty is within ±6.0 mm in LR and AP directions and ±6.7 mm in SI. The dominant uncertainty was the target delineation uncertainty. This geometric analysis helps put into context the range of uncertainties that may be expected during MLC tracking for lung SABR (ClinicalTrials.gov registration number: NCT02514512).


Subject(s)
Lung Neoplasms/radiotherapy , Radiosurgery , Radiotherapy Planning, Computer-Assisted/methods , Uncertainty , Cohort Studies , Humans , Male , Particle Accelerators , Phantoms, Imaging
6.
J Appl Clin Med Phys ; 21(8): 73-82, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32543097

ABSTRACT

PURPOSE: A predictive linac quality assurance system based on the output of the Machine Performance Check (MPC) application was developed using statistical process control and autoregressive integrated moving average forecast modeling. The aim of this study is to demonstrate the feasibility of predictive quality assurance based on MPC tests that allow proactive preventative maintenance procedures to be carried out to better ensure optimal linac performance and minimize downtime. METHOD AND MATERIALS: Daily MPC data were acquired for a total of 490 measurements. The initial 85% of data were used in prediction model learning with the autoregressive integrated moving average technique and in calculating upper and lower control limits for statistical process control analysis. The remaining 15% of data were used in testing the accuracy of the predictions of the proposed system. Two types of prediction were studied, namely, one-step-ahead values for predicting the next day's quality assurance results and six-step-ahead values for predicting up to a week ahead. Results that fall within the upper and lower control limits indicate a normal stage of machine performance, while the tolerance, determined from AAPM TG-142, is the clinically required performance. The gap between the control limits and the clinical tolerances (as the warning stage) provides a window of opportunity for rectifying linac performance issues before they become clinically significant. The accuracy of the predictive model was tested using the root-mean-square error, absolute error, and average accuracy rate for all MPC test parameters. RESULTS: The accuracy of the predictive model is considered high (average root-mean-square error and absolute error for all parameters of less than 0.05). The average accuracy rate for indicating the normal/warning stages was higher than 85.00%. CONCLUSION: Predictive quality assurance with the MPC will allow preventative maintenance, which could lead to improved linac performance and a reduction in unscheduled linac downtime.


Subject(s)
Maintenance , Particle Accelerators
7.
Int J Radiat Oncol Biol Phys ; 101(2): 387-395, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29534898

ABSTRACT

PURPOSE: To report on the primary and secondary outcomes of a prospective clinical trial of electromagnetic-guided multileaf collimator (MLC) tracking radiation therapy for prostate cancer. METHODS AND MATERIALS: Twenty-eight men with prostate cancer were treated with electromagnetic-guided MLC tracking with volumetric modulated arc therapy. A total of 858 fractions were delivered, with the dose per fraction ranging from 2 to 13.75 Gy. The primary outcome was feasibility, with success determined if >95% of fractions were successfully delivered. The secondary outcomes were (1) the improvement in beam-target geometric alignment, (2) the improvement in dosimetric coverage of the prostate and avoidance of critical structures, and (3) no acute grade ≥3 genitourinary or gastrointestinal toxicity. RESULTS: All 858 planned fractions were successfully delivered with MLC tracking, demonstrating the primary outcome of feasibility (P < .001). MLC tracking improved the beam-target geometric alignment from 1.4 to 0.90 mm (root-mean-square error). MLC tracking improved the dosimetric coverage of the prostate and reduced the daily variation in dose to critical structures. No acute grade ≥3 genitourinary or gastrointestinal toxicity was observed. CONCLUSIONS: Electromagnetic-guided MLC tracking radiation therapy for prostate cancer is feasible. The patients received improved geometric targeting and delivered dose distributions that were closer to those planned than they would have received without electromagnetic-guided MLC tracking. No significant acute toxicity was observed.


Subject(s)
Electromagnetic Fields , Prostatic Neoplasms/radiotherapy , Radiotherapy, Image-Guided/methods , Radiotherapy, Intensity-Modulated/methods , Aged , Aged, 80 and over , Dose Fractionation, Radiation , Feasibility Studies , Gastrointestinal Tract/radiation effects , Humans , Male , Middle Aged , Organs at Risk , Prospective Studies , Prostatic Neoplasms/diagnostic imaging , Radiation Injuries/prevention & control , Urogenital System/radiation effects
8.
J Appl Clin Med Phys ; 18(5): 134-142, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28703451

ABSTRACT

Volumetric-modulated arc therapy (VMAT) treatment delivery requires three key dynamic components; gantry rotation, dose rate modulation, and multi-leaf collimator motion, which are all simultaneously varied during the delivery. Misalignment of the gantry angle can potentially affect clinical outcome due to the steep dose gradients and complex MLC shapes involved. It is essential to develop independent gantry angle quality assurance (QA) appropriate to VMAT that can be performed simultaneously with other key VMAT QA testing. In this work, a simple and inexpensive fully independent gantry angle measurement methodology was developed that allows quantitation of the gantry angle accuracy as a function of time. This method is based on the analysis of video footage of a "Double dot" pattern attached to the front cover of the linear accelerator that consists of red and green circles printed on A4 paper sheet. A standard mobile phone is placed on the couch to record the video footage during gantry rotation. The video file is subsequently analyzed and used to determine the gantry angle from each video frame using the relative position of the two dots. There were two types of validation tests performed including the static mode with manual gantry angle rotation and dynamic mode with three complex test plans. The accuracy was 0.26° ± 0.04° and 0.46° ± 0.31° (mean ± 1 SD) for the static and dynamic modes, respectively. This method is user friendly, cost effective, easy to setup, has high temporal resolution, and can be combined with existing time-resolved method for QA of MLC and dose rate to form a comprehensive set of procedures for time-resolved QA of VMAT delivery system.


Subject(s)
Particle Accelerators/standards , Radiotherapy, Intensity-Modulated/methods , Humans , Quality Assurance, Health Care , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Radiotherapy, Intensity-Modulated/instrumentation , Rotation , Time Factors
9.
Med Phys ; 44(8): 3909-3922, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28564208

ABSTRACT

PURPOSE: An ideal commissioning and quality assurance (QA) program for Volumetric Modulated Arc Therapy (VMAT) delivery systems should assess the performance of each individual dynamic component as a function of gantry angle. Procedures within such a program should also be time-efficient, independent of the delivery system and be sensitive to all types of errors. The purpose of this work is to develop a system for automated time-resolved commissioning and QA of VMAT control systems which meets these criteria. METHODS: The procedures developed within this work rely solely on images obtained, using an electronic portal imaging device (EPID) without the presence of a phantom. During the delivery of specially designed VMAT test plans, EPID frames were acquired at 9.5 Hz, using a frame grabber. The set of test plans was developed to individually assess the performance of the dose delivery and multileaf collimator (MLC) control systems under varying levels of delivery complexities. An in-house software tool was developed to automatically extract features from the EPID images and evaluate the following characteristics as a function of gantry angle: dose delivery accuracy, dose rate constancy, beam profile constancy, gantry speed constancy, dynamic MLC positioning accuracy, MLC speed and acceleration constancy, and synchronization between gantry angle, MLC positioning and dose rate. Machine log files were also acquired during each delivery and subsequently compared to information extracted from EPID image frames. RESULTS: The largest difference between measured and planned dose at any gantry angle was 0.8% which correlated with rapid changes in dose rate and gantry speed. For all other test plans, the dose delivered was within 0.25% of the planned dose for all gantry angles. Profile constancy was not found to vary with gantry angle for tests where gantry speed and dose rate were constant, however, for tests with varying dose rate and gantry speed, segments with lower dose rate and higher gantry speed exhibited less profile stability. MLC positional accuracy was not observed to be dependent on the degree of interdigitation. MLC speed was measured for each individual leaf and slower leaf speeds were shown to be compensated for by lower dose rates. The test procedures were found to be sensitive to 1 mm systematic MLC errors, 1 mm random MLC errors, 0.4 mm MLC gap errors and synchronization errors between the MLC, dose rate and gantry angle controls systems of 1°. In general, parameters measured by both EPID and log files agreed with the plan, however, a greater average departure from the plan was evidenced by the EPID measurements. CONCLUSION: QA test plans and analysis methods have been developed to assess the performance of each dynamic component of VMAT deliveries individually and as a function of gantry angle. This methodology relies solely on time-resolved EPID imaging without the presence of a phantom and has been shown to be sensitive to a range of delivery errors. The procedures developed in this work are both comprehensive and time-efficient and can be used for streamlined commissioning and QA of VMAT delivery systems.


Subject(s)
Patient Positioning , Phantoms, Imaging , Radiotherapy, Intensity-Modulated , Electrical Equipment and Supplies , Humans , Software
10.
Int J Health Care Qual Assur ; 30(2): 90-102, 2017 Mar 13.
Article in English | MEDLINE | ID: mdl-28256929

ABSTRACT

Purpose Due to increasing complexity, modern radiotherapy techniques require comprehensive quality assurance (QA) programmes, that to date generally focus on the pre-treatment stage. The purpose of this paper is to provide a method for an individual patient treatment QA evaluation and identification of a "quality gap" for continuous quality improvement. Design/methodology/approach A statistical process control (SPC) was applied to evaluate treatment delivery using in vivo electronic portal imaging device (EPID) dosimetry. A moving range control chart was constructed to monitor the individual patient treatment performance based on a control limit generated from initial data of 90 intensity-modulated radiotherapy (IMRT) and ten volumetric-modulated arc therapy (VMAT) patient deliveries. A process capability index was used to evaluate the continuing treatment quality based on three quality classes: treatment type-specific, treatment linac-specific, and body site-specific. Findings The determined control limits were 62.5 and 70.0 per cent of the χ pass-rate for IMRT and VMAT deliveries, respectively. In total, 14 patients were selected for a pilot study the results of which showed that about 1 per cent of all treatments contained errors relating to unexpected anatomical changes between treatment fractions. Both rectum and pelvis cancer treatments demonstrated process capability indices were less than 1, indicating the potential for quality improvement and hence may benefit from further assessment. Research limitations/implications The study relied on the application of in vivo EPID dosimetry for patients treated at the specific centre. Sampling patients for generating the control limits were limited to 100 patients. Whilst the quantitative results are specific to the clinical techniques and equipment used, the described method is generally applicable to IMRT and VMAT treatment QA. Whilst more work is required to determine the level of clinical significance, the authors have demonstrated the capability of the method for both treatment specific QA and continuing quality improvement. Practical implications The proposed method is a valuable tool for assessing the accuracy of treatment delivery whilst also improving treatment quality and patient safety. Originality/value Assessing in vivo EPID dosimetry with SPC can be used to improve the quality of radiation treatment for cancer patients.


Subject(s)
Neoplasms/radiotherapy , Quality Assurance, Health Care/methods , Radiotherapy Planning, Computer-Assisted/instrumentation , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/instrumentation , Radiotherapy, Intensity-Modulated/methods , Algorithms , Humans , Pilot Projects
11.
J Appl Clin Med Phys ; 17(6): 204-216, 2016 11 08.
Article in English | MEDLINE | ID: mdl-27929494

ABSTRACT

Dynamic sliding gap multileaf collimator (MLC) fields are used to model MLC properties within the treatment planning system (TPS) for dynamic treatments. One of the key MLC properties in the Eclipse TPS is the dosimetric leaf gap (DLG) and precise determination of this parameter is paramount to ensuring accurate dose delivery. In this investigation, we report on how the spacing between control points (CPs) for sliding gap fields impacts the dose delivery, MLC positioning accuracy, and measurement of the DLG. The central axis dose was measured for sliding gap MLC fields with gap widths ranging from 2 to 40 mm. It was found that for deliveries containing two CPs, the central axis dose was underestimated by the TPS for all gap widths, with the maximum difference being 8% for a 2 mm gap field. For the same sliding gap fields containing 50 CPs, the measured dose was always within ± 2% of the TPS dose. By directly measuring the MLC trajectories we show that this dose difference is due to a systematic MLC gap error for fields containing two CPs, and that the cause of this error is due to the leaf position offset table which is incorrectly applied when the spacing between CPs is too large. This MLC gap error resulted in an increase in the measured DLG of 0.5 mm for both 6MV and 10 MV, when using fields with 2 CPs compared to 50 CPs. Furthermore, this change in DLG was shown to decrease the mean TPS-calculated dose to the target volume by 2.6% for a clinical IMRT test plan. This work has shown that systematic MLC positioning errors occur for sliding gap MLC fields containing two CPs and that using these fields to model critical TPS parameters, such as the DLG, may result in clinically significant systematic dose calculation errors during subsequent dynamic MLC treatments.


Subject(s)
Models, Theoretical , Particle Accelerators/instrumentation , Quality Control , Radiometry/methods , Radiotherapy Planning, Computer-Assisted/standards , Radiotherapy, Conformal/methods , Radiotherapy, Intensity-Modulated/methods , Algorithms , Humans , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods
12.
J Appl Clin Med Phys ; 17(6): 292-304, 2016 11 08.
Article in English | MEDLINE | ID: mdl-27929502

ABSTRACT

We proposed to perform a basic dosimetry commissioning on a new imager sys-tem, the Varian aS1200 electronic portal imaging device (EPID) and TrueBeam 2.0 linear accelerator for flattened (FF) and flattening filter-free (FFF) beams, then to develop an image-based quality assurance (QA) model for verification of the system delivery accuracy for intensity-modulated radiation therapy (IMRT) treat-ments. For dosimetry testing, linearity of dose response with MU, imager lag, and effectiveness of backscatter shielding were investigated. Then, an image-based model was developed to convert images to planar dose onto a virtual water phantom. The model parameters were identified using energy fluence of the Acuros treatment planning system (TPS) and, reference dose profiles and output factors measured at depths of 5, 10, 15, and 20 cm in water phantom for square fields. To validate the model, its calculated dose was compared to measured dose from MapCHECK 2 diode arrays for 36 IMRT fields at 10 cm depth delivered with 6X, 6XFFF, 10X, and 10XFFF energies. An in-house gamma function was used to compare planar doses pixel-by-pixel. Finally, the method was applied to the same IMRT fields to verify their pretreatment delivery dose compared with Eclipse TPS dose. For the EPID commissioning, dose linearity was within 0.4% above 5 MU and ~ 1% above 2 MU, measured lag was smaller than the previous EPIDs, and profile symmetry was improved. The model was validated with mean gamma pass rates (standard deviation) of 99.0% (0.4%), 99.5% (0.6%), 99.3% (0.4%), and 98.0% (0.8%) at 3%/3 mm for respectively 6X, 6XFFF, 10X, and 10XFFF beams. Using the same comparison criteria, the beam deliveries were verified with mean pass rates of 100% (0.0%), 99.6% (0.3%), 99.9% (0.1%), and 98.7% (1.4%). Improvements were observed in dosimetric response of the aS1200 imager compared to previous EPID models, and the model was successfully developed for the new system and delivery energies of 6 and 10 MV, FF, and FFF modes.


Subject(s)
Filtration/instrumentation , Particle Accelerators/instrumentation , Phantoms, Imaging , Radiometry/instrumentation , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Algorithms , Electrical Equipment and Supplies , Humans , Models, Theoretical , Radiotherapy Dosage
13.
J Appl Clin Med Phys ; 17(5): 348-365, 2016 09 08.
Article in English | MEDLINE | ID: mdl-27685132

ABSTRACT

Multileaf collimator (MLC) positions should be precisely and independently mea-sured as a function of gantry angle as part of a comprehensive quality assurance (QA) program for volumetric-modulated arc therapy (VMAT). It is also ideal that such a QA program has the ability to relate MLC positional accuracy to patient-specific dosimetry in order to determine the clinical significance of any detected MLC errors. In this work we propose a method to verify individual MLC trajectories during VMAT deliveries for use as a routine linear accelerator QA tool. We also extend this method to reconstruct the 3D patient dose in the treatment planning sys-tem based on the measured MLC trajectories and the original DICOM plan file. The method relies on extracting MLC positions from EPID images acquired at 8.41fps during clinical VMAT deliveries. A gantry angle is automatically tagged to each image in order to obtain the MLC trajectories as a function of gantry angle. This analysis was performed for six clinical VMAT plans acquired at monthly intervals for three months. The measured trajectories for each delivery were compared to the MLC positions from the DICOM plan file. The maximum mean error detected was 0.07 mm and a maximum root-mean-square error was 0.8 mm for any leaf of any delivery. The sensitivity of this system was characterized by introducing random and systematic MLC errors into the test plans. It was demonstrated that the system is capable of detecting random and systematic errors on the range of 1-2mm and single leaf calibration errors of 0.5 mm. The methodology developed in the work has potential to be used for efficient routine linear accelerator MLC QA and pretreatment patient-specific QA and has the ability to relate measured MLC positional errors to 3D dosimetric errors within a patient volume.


Subject(s)
Electrical Equipment and Supplies , Particle Accelerators/instrumentation , Quality Assurance, Health Care/methods , Quality Control , Radiotherapy, Intensity-Modulated/standards , Humans , Neoplasms/radiotherapy , Radiotherapy, Intensity-Modulated/instrumentation , Software
14.
Radiat Oncol ; 11(1): 106, 2016 Aug 12.
Article in English | MEDLINE | ID: mdl-27520279

ABSTRACT

PURPOSE: The aim of this study is to investigate the performance and limitations of a real-time transit electronic portal imaging device (EPID) dosimetry system for error detection during dynamic intensity modulated radiation therapy (IMRT) treatment delivery. Sites studied are prostate, head and neck (HN), and rectal cancer treatments. METHODS: The system compares measured cumulative transit EPID image frames with predicted cumulative image frames in real-time during treatment using a χ comparison with 4 %, 4 mm criteria. The treatment site-specific thresholds (prostate, HN and rectum IMRT) were determined using initial data collected from 137 patients (274 measured treatment fractions) and a statistical process control methodology. These thresholds were then applied to data from 15 selected patients including 5 prostate, 5 HN, and 5 rectum IMRT treatments for system evaluation and classification of error sources. RESULTS: Clinical demonstration of real-time transit EPID dosimetry in IMRT was presented. For error simulation, the system could detect gross errors (i.e. wrong patient, wrong plan, wrong gantry angle) immediately after EPID stabilisation; 2 seconds after the start of treatment. The average rate of error detection was 7.0 % (prostate = 5.6 %, HN= 8.7 % and rectum = 6.7 %). The detected errors were classified as either clinical in origin (e.g. patient anatomical changes), or non-clinical in origin (e.g. detection system errors). Classified errors were 3.2 % clinical and 3.9 % non-clinical. CONCLUSION: An EPID-based real-time error detection method for treatment verification during dynamic IMRT has been developed and tested for its performance and limitations. The system is able to detect gross errors in real-time, however improvement in system robustness is required to reduce the non-clinical sources of error detection.


Subject(s)
Computer Systems , Radiometry/instrumentation , Radiometry/methods , Algorithms , Humans , Radiotherapy, Intensity-Modulated
15.
Med Phys ; 41(8): 081716, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25086526

ABSTRACT

PURPOSE: To develop a frame-by-frame correction for the energy response of amorphous silicon electronic portal imaging devices (a-Si EPIDs) to radiation that has transmitted through the multileaf collimator (MLC) and to integrate this correction into the backscatter shielded EPID (BSS-EPID) dose-to-water conversion model. METHODS: Individual EPID frames were acquired using a Varian frame grabber and iTools acquisition software then processed using in-house software developed inMATLAB. For each EPID image frame, the region below the MLC leaves was identified and all pixels in this region were multiplied by a factor of 1.3 to correct for the under-response of the imager to MLC transmitted radiation. The corrected frames were then summed to form a corrected integrated EPID image. This correction was implemented as an initial step in the BSS-EPID dose-to-water conversion model which was then used to compute dose planes in a water phantom for 35 IMRT fields. The calculated dose planes, with and without the proposed MLC transmission correction, were compared to measurements in solid water using a two-dimensional diode array. RESULTS: It was observed that the integration of the MLC transmission correction into the BSS-EPID dose model improved agreement between modeled and measured dose planes. In particular, the MLC correction produced higher pass rates for almost all Head and Neck fields tested, yielding an average pass rate of 99.8% for 2%/2 mm criteria. A two-sample independent t-test and fisher F-test were used to show that the MLC transmission correction resulted in a statistically significant reduction in the mean and the standard deviation of the gamma values, respectively, to give a more accurate and consistent dose-to-water conversion. CONCLUSIONS: The frame-by-frame MLC transmission response correction was shown to improve the accuracy and reduce the variability of the BSS-EPID dose-to-water conversion model. The correction may be applied as a preprocessing step in any pretreatment portal dosimetry calculation and has been shown to be beneficial for highly modulated IMRT fields.


Subject(s)
Radiometry/methods , Algorithms , Models, Theoretical , Phantoms, Imaging , Radiation Protection , Radiometry/instrumentation , Radiotherapy Dosage , Radiotherapy, Intensity-Modulated/instrumentation , Radiotherapy, Intensity-Modulated/methods , Software , Water
16.
Opt Express ; 21(1): 834-9, 2013 Jan 14.
Article in English | MEDLINE | ID: mdl-23388976

ABSTRACT

The far-field spatial distributions of higher order electro-magnetic mode supercontinua were resolved spectrally and recorded. The supercontinua were created by precise control and direction of input pump energy offset axially from the photonic crystal fiber core. By processing the measured spectra, the spatial mode shape at each wavelength was determined. Discrete spectral features are associated with symmetrical spatial patterns arising from the host fiber geometry and suggest the electromagnetic mode pairing between the longer wavelength solitons and associated visible dispersive waves. Clear differences between supercontinua generated in fundamental and higher order electromagnetic modes exist. These data should inform theoretical studies as the solitons and the dispersive wave generated by fission may be matched by spatial orientation of the electromagnetic mode that both occupy.

SELECTION OF CITATIONS
SEARCH DETAIL
...