Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Neurobiol Dis ; : 106622, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39097034

ABSTRACT

The complexity and heterogeneity of PD necessitate advanced diagnostic and prognostic tools to elucidate its molecular mechanisms accurately. In this study, we addressed this challenge by conducting a pilot phospho-proteomic analysis of peripheral blood mononuclear cells (PBMCs) from idiopathic PD patients at varying disease stages to delineate the functional alterations occurring in these cells throughout the disease course and identify key molecules and pathways contributing to PD progression. By integrating clinical data with phospho-proteomic profiles across various PD stages, we identify potential stage-specific molecular signatures indicative of disease progression. This integrative approach allows for the discernment of distinct disease states and enhances our understanding of PD heterogeneity.

2.
Mol Cell Proteomics ; 23(1): 100689, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38043703

ABSTRACT

Distinction of non-self from self is the major task of the immune system. Immunopeptidomics studies the peptide repertoire presented by the human leukocyte antigen (HLA) protein, usually on tissues. However, HLA peptides are also bound to plasma soluble HLA (sHLA), but little is known about their origin and potential for biomarker discovery in this readily available biofluid. Currently, immunopeptidomics is hampered by complex workflows and limited sensitivity, typically requiring several mL of plasma. Here, we take advantage of recent improvements in the throughput and sensitivity of mass spectrometry (MS)-based proteomics to develop a highly sensitive, automated, and economical workflow for HLA peptide analysis, termed Immunopeptidomics by Biotinylated Antibodies and Streptavidin (IMBAS). IMBAS-MS quantifies more than 5000 HLA class I peptides from only 200 µl of plasma, in just 30 min. Our technology revealed that the plasma immunopeptidome of healthy donors is remarkably stable throughout the year and strongly correlated between individuals with overlapping HLA types. Immunopeptides originating from diverse tissues, including the brain, are proportionately represented. We conclude that sHLAs are a promising avenue for immunology and potentially for precision oncology.


Subject(s)
Neoplasms , Humans , Streptavidin , Precision Medicine , Histocompatibility Antigens Class I/metabolism , HLA Antigens , Histocompatibility Antigens Class II , Peptides/metabolism , Mass Spectrometry , Antibodies
3.
Nature ; 624(7990): 192-200, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37968396

ABSTRACT

Cellular functions are mediated by protein-protein interactions, and mapping the interactome provides fundamental insights into biological systems. Affinity purification coupled to mass spectrometry is an ideal tool for such mapping, but it has been difficult to identify low copy number complexes, membrane complexes and complexes that are disrupted by protein tagging. As a result, our current knowledge of the interactome is far from complete, and assessing the reliability of reported interactions is challenging. Here we develop a sensitive high-throughput method using highly reproducible affinity enrichment coupled to mass spectrometry combined with a quantitative two-dimensional analysis strategy to comprehensively map the interactome of Saccharomyces cerevisiae. Thousand-fold reduced volumes in 96-well format enabled replicate analysis of the endogenous GFP-tagged library covering the entire expressed yeast proteome1. The 4,159 pull-downs generated a highly structured network of 3,927 proteins connected by 31,004 interactions, doubling the number of proteins and tripling the number of reliable interactions compared with existing interactome maps2. This includes very-low-abundance epigenetic complexes, organellar membrane complexes and non-taggable complexes inferred by abundance correlation. This nearly saturated interactome reveals that the vast majority of yeast proteins are highly connected, with an average of 16 interactors. Similar to social networks between humans, the average shortest distance between proteins is 4.2 interactions. AlphaFold-Multimer provided novel insights into the functional roles of previously uncharacterized proteins in complexes. Our web portal ( www.yeast-interactome.org ) enables extensive exploration of the interactome dataset.


Subject(s)
Protein Interaction Mapping , Protein Interaction Maps , Proteome , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Mass Spectrometry , Protein Interaction Mapping/methods , Proteome/chemistry , Proteome/metabolism , Reproducibility of Results , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Epigenesis, Genetic , Databases, Factual
4.
EMBO Mol Med ; 15(9): e17459, 2023 09 11.
Article in English | MEDLINE | ID: mdl-37519267

ABSTRACT

SARS-CoV-2 may directly and indirectly damage lung tissue and other host organs, but there are few system-wide, untargeted studies of these effects on the human body. Here, we developed a parallelized mass spectrometry (MS) proteomics workflow enabling the rapid, quantitative analysis of hundreds of virus-infected FFPE tissues. The first layer of response to SARS-CoV-2 in all tissues was dominated by circulating inflammatory molecules. Beyond systemic inflammation, we differentiated between systemic and true tissue-specific effects to reflect distinct COVID-19-associated damage patterns. Proteomic changes in the lungs resembled those of diffuse alveolar damage (DAD) in non-COVID-19 patients. Extensive organ-specific changes were also evident in the kidneys, liver, and lymphatic and vascular systems. Secondary inflammatory effects in the brain were related to rearrangements in neurotransmitter receptors and myelin degradation. These MS-proteomics-derived results contribute substantially to our understanding of COVID-19 pathomechanisms and suggest strategies for organ-specific therapeutic interventions.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Proteomics , Inflammation , Lung
5.
Science ; 380(6641): 178-187, 2023 04 14.
Article in English | MEDLINE | ID: mdl-37053338

ABSTRACT

Venous thromboembolism (VTE) comprising deep venous thrombosis and pulmonary embolism is a major cause of morbidity and mortality. Short-term immobility-related conditions are a major risk factor for the development of VTE. Paradoxically, long-term immobilized free-ranging hibernating brown bears and paralyzed spinal cord injury (SCI) patients are protected from VTE. We aimed to identify mechanisms of immobility-associated VTE protection in a cross-species approach. Mass spectrometry-based proteomics revealed an antithrombotic signature in platelets of hibernating brown bears with heat shock protein 47 (HSP47) as the most substantially reduced protein. HSP47 down-regulation or ablation attenuated immune cell activation and neutrophil extracellular trap formation, contributing to thromboprotection in bears, SCI patients, and mice. This cross-species conserved platelet signature may give rise to antithrombotic therapeutics and prognostic markers beyond immobility-associated VTE.


Subject(s)
Blood Platelets , HSP47 Heat-Shock Proteins , Hypokinesia , Spinal Cord Injuries , Ursidae , Venous Thromboembolism , Animals , Humans , Mice , Fibrinolytic Agents/therapeutic use , Pulmonary Embolism/drug therapy , Pulmonary Embolism/ethnology , Pulmonary Embolism/metabolism , Risk Factors , Spinal Cord Injuries/complications , Ursidae/metabolism , Venous Thromboembolism/etiology , Venous Thromboembolism/metabolism , Hypokinesia/complications , HSP47 Heat-Shock Proteins/metabolism , Blood Platelets/metabolism
6.
J Cachexia Sarcopenia Muscle ; 14(1): 439-451, 2023 02.
Article in English | MEDLINE | ID: mdl-36517414

ABSTRACT

BACKGROUND: Inactivity and unloading induce skeletal muscle atrophy, loss of strength and detrimental metabolic effects. Bed rest is a model to study the impact of inactivity on the musculoskeletal system. It not only provides information for bed-ridden patients care, but it is also a ground-based spaceflight analogue used to mimic the challenges of long space missions for the human body. In both cases, it would be desirable to develop a panel of biomarkers to monitor muscle atrophy in a minimally invasive way at point of care to limit the onset of muscle loss in a personalized fashion. METHODS: We applied mass spectrometry-based proteomics to measure plasma protein abundance changes in response to 10 days of bed rest in 10 young males. To validate the correlation between muscle atrophy and the significant hits emerging from our study, we analysed in parallel, with the same pipeline, a cohort of cancer patients with or without cachexia and age-matched controls. Our analysis resulted in the quantification of over 500 proteins. RESULTS: Unloading affected plasma concentration of proteins of the complement cascade, lipid carriers and proteins derived from tissue leakage. Among the latter, teneurin-4 increased 1.6-fold in plasma at bed rest day 10 (BR10) compared with BR0 (6.E9 vs. 4.3E9, P = 0.02) and decreased to 0.6-fold the initial abundance after 2 days of recovery at normal daily activity (R + 2, 2.7E9, P = 3.3E-4); the extracellular matrix protein lumican was decreased to 0.7-fold (1.2E9 vs. 8.5E8, P = 1.5E-4) at BR10 and remained as low at R + 2. We identified six proteins distinguishing subjects developing unloading-mediated muscle atrophy (decrease of >4% of quadriceps cross-sectional area) from those largely maintaining their initial muscle mass. Among them, transthyretin, a thyroid hormone-binding protein, was significantly less abundant at BR10 in the plasma of subjects with muscle atrophy compared with those with no atrophy (1.6E10 vs. 2.6E10, P = 0.001). Haptoglobin-related protein was also significantly reduced in the serum of cancer patients with cachexia compared with that of controls. CONCLUSIONS: Our findings highlight a combination or proteomic changes that can be explored as potential biomarkers of muscle atrophy occurring under different conditions. The panel of significant proteomic differences distinguishing atrophy-prone and atrophy-resistant subjects after 10 days of bed rest need to be tested in a larger cohort to validate their potential to predict inactivity-triggered muscle loss in humans.


Subject(s)
Bed Rest , Proteome , Male , Humans , Bed Rest/adverse effects , Healthy Volunteers , Cachexia , Proteomics , Muscular Atrophy/etiology
7.
Microb Genom ; 8(8)2022 08.
Article in English | MEDLINE | ID: mdl-35917163

ABSTRACT

16S rRNA gene profiling is currently the most widely used technique in microbiome research and allows the study of microbial diversity, taxonomic profiling, phylogenetics, functional and network analysis. While a plethora of tools have been developed for the analysis of 16S rRNA gene data, only a few platforms offer a user-friendly interface and none comprehensively covers the whole analysis pipeline from raw data processing down to complex analysis. We introduce Namco, an R shiny application that offers a streamlined interface and serves as a one-stop solution for microbiome analysis. We demonstrate Namco's capabilities by studying the association between a rich fibre diet and the gut microbiota composition. Namco helped to prove the hypothesis that butyrate-producing bacteria are prompted by fibre-enriched intervention. Namco provides a broad range of features from raw data processing and basic statistics down to machine learning and network analysis, thus covering complex data analysis tasks that are not comprehensively covered elsewhere. Namco is freely available at https://exbio.wzw.tum.de/namco/.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Bacteria/genetics , Gastrointestinal Microbiome/genetics , Microbiota/genetics , Phylogeny , RNA, Ribosomal, 16S/genetics
8.
JAMA Cardiol ; 7(3): 286-297, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34910083

ABSTRACT

IMPORTANCE: Myocardial injury is a common feature of patients with SARS-CoV-2 infection. However, the cardiac inflammatory processes associated with SARS-CoV-2 infection are not completely understood. OBJECTIVE: To investigate the inflammatory cardiac phenotype associated with SARS-CoV-2 infection compared with viral myocarditis, immune-mediated myocarditis, and noninflammatory cardiomyopathy by integrating histologic, transcriptomic, and proteomic profiling. DESIGN, SETTING, AND PARTICIPANTS: This case series was a cooperative study between the Ludwig Maximilian University Hospital Munich and the Cardiopathology Referral Center at the University of Tübingen in Germany. A cohort of 19 patients with suspected myocarditis was examined; of those, 5 patients were hospitalized with SARS-CoV-2 infection between March and May 2020. Cardiac tissue specimens from those 5 patients were compared with specimens from 5 patients with immune-mediated myocarditis, 4 patients with non-SARS-CoV-2 viral myocarditis, and 5 patients with noninflammatory cardiomyopathy, collected from January to August 2019. EXPOSURES: Endomyocardial biopsy. MAIN OUTCOMES AND MEASURES: The inflammatory cardiac phenotypes were measured by immunohistologic analysis, RNA exome capture sequencing, and mass spectrometry-based proteomic analysis of endomyocardial biopsy specimens. RESULTS: Among 19 participants, the median age was 58 years (range, 37-76 years), and 15 individuals (79%) were male. Data on race and ethnicity were not collected. The abundance of CD163+ macrophages was generally higher in the cardiac tissue of patients with myocarditis, whereas lymphocyte counts were lower in the tissue of patients with SARS-CoV-2 infection vs patients with non-SARS-CoV-2 virus-associated and immune-mediated myocarditis. Among those with SARS-CoV-2 infection, components of the complement cascade, including C1q subunits (transcriptomic analysis: 2.5-fold to 3.6-fold increase; proteomic analysis: 2.0-fold to 3.4-fold increase) and serine/cysteine proteinase inhibitor clade G member 1 (transcriptomic analysis: 1.7-fold increase; proteomic analysis: 2.6-fold increase), belonged to the most commonly upregulated transcripts and differentially abundant proteins. In cardiac macrophages, the abundance of C1q was highest in SARS-CoV-2 infection. Assessment of important signaling cascades identified an upregulation of the serine/threonine mitogen-activated protein kinase pathways. CONCLUSIONS AND RELEVANCE: This case series found that the cardiac immune signature varied in inflammatory conditions with different etiologic characteristics. Future studies are needed to examine the role of these immune pathways in myocardial inflammation.


Subject(s)
COVID-19 , Myocarditis , Humans , Inflammation/complications , Male , Myocarditis/etiology , Proteomics , SARS-CoV-2
9.
Nat Protoc ; 15(2): 266-315, 2020 02.
Article in English | MEDLINE | ID: mdl-31907453

ABSTRACT

Mouse models of human cancer have transformed our ability to link genetics, molecular mechanisms and phenotypes. Both reverse and forward genetics in mice are currently gaining momentum through advances in next-generation sequencing (NGS). Methodologies to analyze sequencing data were, however, developed for humans and hence do not account for species-specific differences in genome structures and experimental setups. Here, we describe standardized computational pipelines specifically tailored to the analysis of mouse genomic data. We present novel tools and workflows for the detection of different alteration types, including single-nucleotide variants (SNVs), small insertions and deletions (indels), copy-number variations (CNVs), loss of heterozygosity (LOH) and complex rearrangements, such as in chromothripsis. Workflows have been extensively validated and cross-compared using multiple methodologies. We also give step-by-step guidance on the execution of individual analysis types, provide advice on data interpretation and make the complete code available online. The protocol takes 2-7 d, depending on the desired analyses.


Subject(s)
Genomics/methods , Neoplasms/genetics , Sequence Analysis, DNA/methods , Animals , INDEL Mutation , Loss of Heterozygosity , Mice , Polymorphism, Single Nucleotide , Workflow
10.
Nature ; 554(7690): 62-68, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29364867

ABSTRACT

The poor correlation of mutational landscapes with phenotypes limits our understanding of the pathogenesis and metastasis of pancreatic ductal adenocarcinoma (PDAC). Here we show that oncogenic dosage-variation has a critical role in PDAC biology and phenotypic diversification. We find an increase in gene dosage of mutant KRAS in human PDAC precursors, which drives both early tumorigenesis and metastasis and thus rationalizes early PDAC dissemination. To overcome the limitations posed to gene dosage studies by the stromal richness of PDAC, we have developed large cell culture resources of metastatic mouse PDAC. Integration of cell culture genomes, transcriptomes and tumour phenotypes with functional studies and human data reveals additional widespread effects of oncogenic dosage variation on cell morphology and plasticity, histopathology and clinical outcome, with the highest KrasMUT levels underlying aggressive undifferentiated phenotypes. We also identify alternative oncogenic gains (Myc, Yap1 or Nfkb2), which collaborate with heterozygous KrasMUT in driving tumorigenesis, but have lower metastatic potential. Mechanistically, different oncogenic gains and dosages evolve along distinct evolutionary routes, licensed by defined allelic states and/or combinations of hallmark tumour suppressor alterations (Cdkn2a, Trp53, Tgfß-pathway). Thus, evolutionary constraints and contingencies direct oncogenic dosage gain and variation along defined routes to drive the early progression of PDAC and shape its downstream biology. Our study uncovers universal principles of Ras-driven oncogenesis that have potential relevance beyond pancreatic cancer.


Subject(s)
Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Evolution, Molecular , Gene Dosage , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Proto-Oncogene Proteins p21(ras)/genetics , Adaptor Proteins, Signal Transducing/genetics , Alleles , Animals , Carcinogenesis/genetics , Cell Cycle Proteins , Cyclin-Dependent Kinase Inhibitor p16/genetics , Disease Progression , Female , Genes, myc , Genes, p53 , Humans , Male , Mice , Mutation , NF-kappa B p52 Subunit/genetics , Neoplasm Metastasis/genetics , Nuclear Proteins/genetics , Phenotype , Phosphoproteins/genetics , Transcription Factors/genetics , Transcriptome/genetics , Transforming Growth Factor beta1/genetics , YAP-Signaling Proteins
SELECTION OF CITATIONS
SEARCH DETAIL