Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Urol Oncol ; 40(9): 412.e15-412.e24, 2022 09.
Article in English | MEDLINE | ID: mdl-35729018

ABSTRACT

BACKGROUND: Testicular germ cell tumors (TGCT) are unique malignancies of young adult men; their biology is, however, underexplored and there has not been much progress in their treatment for decades. Circulating free tumor DNA (cfDNA) analysis represents a promising way of discovering novel diagnostic and treatment options. OBJECTIVE: The study evaluates the clinical value of cfDNA detection in TGCT patients. DESIGN AND METHODS: Total cfDNA concentration and ratio of its 2 main fragments (180 and 360 bp) were evaluated by spectrophotometry, capillary electrophoresis and qPCR in peripheral blood plasma of 96 TGCT patients (173 samples) and 31 normal controls. Non-parametric tests were used for statistical analyses. RESULTS: The total cfDNA concentration was significantly higher in TGCT than in controls (P < 0.0001), with the highest levels at disease progression, but with no clear threshold between malignant and normal samples. Patients with positive tumor markers had higher cfDNA concentrations than those with negative markers (P = 0.01). Longer 360 bp cfDNA fragments were found in 58% of TGCT patients including almost all samples from relapse or disease progression but no normal controls (P < 0.0001). CONCLUSION: Total cfDNA levels are significantly increased in TGCT patients but without a clear threshold separating normal and tumor samples, thus total cfDNA amount itself is not a sensitive enough marker to identify or monitor TGCT. Longer cfDNA fragments have been found exclusively in a proportion of tumors and predominantly at disease progression, representing a novel potential marker for TGCT monitoring that would deserve further exploration.


Subject(s)
Cell-Free Nucleic Acids , Circulating Tumor DNA , Neoplasms, Germ Cell and Embryonal , Testicular Neoplasms , Biomarkers, Tumor , Disease Progression , Humans , Male , Young Adult
3.
Blood Adv ; 5(21): 4393-4397, 2021 11 09.
Article in English | MEDLINE | ID: mdl-34529760

ABSTRACT

Fusion of the ZNF384 gene as the 3' partner to several different 5' partner genes occurs recurrently in B-cell precursor acute lymphoblastic and mixed phenotype B/myeloid leukemia. These canonical fusions (ZNF384r) contain the complete ZNF384 coding sequence and are associated with a specific gene expression signature. Cases with this signature, but without canonical ZNF384 fusions (ZNF384r-like cases), have been described previously. Although some have been shown to harbor ZNF362 fusions, the primary aberrations remain unknown in a major proportion. We studied 3 patients with the ZNF384r signature and unknown primary genetic background and identified a previously unknown class of genetic aberration affecting the last exon of ZNF384 and resulting in disruption of the C-terminal portion of the ZNF384 protein. Importantly, in 2 cases, the ZNF384 aberration, indel, was missed during the bioinformatic analysis but revealed by the manual, targeted reanalysis. Two cases with the novel aberrations had a mixed (B/myeloid) immunophenotype commonly associated with canonical ZNF384 fusions. In conclusion, we present leukemia cases with a novel class of ZNF384 aberrations that phenocopy leukemia with ZNF384r. Therefore, we show that part of the so-called ZNF384r-like cases represent the same genetic subtype as leukemia with canonical ZNF384 fusions.


Subject(s)
Leukemia, Myeloid, Acute , Trans-Activators , Humans , Immunophenotyping , Leukemia, Myeloid, Acute/genetics , Trans-Activators/genetics , Transcription Factors , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL