Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ISME J ; 18(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38381653

ABSTRACT

A promising strategy to overcome limitations in biological control of insect pests is the combined application of entomopathogenic pseudomonads (EPPs) and nematodes (EPNs) associated with mutualistic bacteria (NABs). Yet, little is known about interspecies interactions such as competition, coexistence, or even cooperation between these entomopathogens when they infect the same insect host. We investigated the dynamics of bacteria-bacteria interactions between the EPP Pseudomonas protegens CHA0 and the NAB Xenorhabdus bovienii SM5 isolated from the EPN Steinernema feltiae RS5. Bacterial populations were assessed over time in experimental systems of increasing complexity. In vitro, SM5 was outcompeted when CHA0 reached a certain cell density, resulting in the collapse of the SM5 population. In contrast, both bacteria were able to coexist upon haemolymph-injection into Galleria mellonella larvae, as found for three further EPP-NAB combinations. Finally, both bacteria were administered by natural infection routes i.e. orally for CHA0 and nematode-vectored for SM5 resulting in the addition of RS5 to the system. This did not alter bacterial coexistence nor did the presence of the EPP affect nematode reproductive success or progeny virulence. CHA0 benefited from RS5, probably by exploiting access routes formed by the nematodes penetrating the larval gut epithelium. Our results indicate that EPPs are able to share an insect host with EPNs and their mutualistic bacteria without major negative effects on the reproduction of any of the three entomopathogens or the fitness of the nematodes. This suggests that their combination is a promising strategy for biological insect pest control.


Subject(s)
Moths , Rhabditida , Animals , Insecta , Moths/microbiology , Larva/microbiology , Symbiosis , Rhabditida/microbiology
2.
Microb Ecol ; 86(3): 1947-1960, 2023 Oct.
Article in English | MEDLINE | ID: mdl-36849610

ABSTRACT

Combining different biocontrol agents (BCA) is an approach to increase efficacy and reliability of biological control. If several BCA are applied together, they have to be compatible and ideally work together. We studied the interaction of a previously selected BCA consortium of entomopathogenic pseudomonads (Pseudomonas chlororaphis), nematodes (Steinernema feltiae associated with Xenorhabdus bovienii), and fungi (Metarhizium brunneum). We monitored the infection course in a leaf- (Pieris brassicae) and a root-feeding (Diabrotica balteata) pest insect after simultaneous application of the three BCA as well as their interactions inside the larvae in a laboratory setting. The triple combination caused the highest mortality and increased killing speed compared to single applications against both pests. Improved efficacy against P. brassicae was mainly caused by the pseudomonad-nematode combination, whereas the nematode-fungus combination accelerated killing of D. balteata. Co-monitoring of the three BCA and the nematode-associated Xenorhabdus symbionts revealed that the four organisms are able to co-infect the same larva. However, with advancing decay of the cadaver there is increasing competition and cadaver colonization is clearly dominated by the pseudomonads, which are known for their high competitivity in the plant rhizosphere. Altogether, the combination of the three BCA increased killing efficacy against a Coleopteran and a Lepidopteran pest which indicates that this consortium could be applied successfully against a variety of insect pests.


Subject(s)
Pest Control, Biological , Rhabditida , Animals , Reproducibility of Results , Insecta , Larva/microbiology , Rhabditida/microbiology , Plant Leaves
3.
BMC Biol ; 18(1): 99, 2020 08 11.
Article in English | MEDLINE | ID: mdl-32782023

ABSTRACT

BACKGROUND: The ability of fungal cells to undergo cell-to-cell communication and anastomosis, the process of vegetative hyphal fusion, allows them to maximize their overall fitness. Previous studies in a number of fungal species have identified the requirement of several signaling pathways for anastomosis, including the so far best characterized soft (So) gene, and the MAPK pathway components MAK-1 and MAK-2 of Neurospora crassa. Despite the observations of hyphal fusions' involvement in pathogenicity and host adhesion, the connection between cell fusion and fungal lifestyles is still unclear. Here, we address the role of anastomosis in fungal development and asexual reproduction in Zymoseptoria tritici, the most important fungal pathogen of wheat in Europe. RESULTS: We show that Z. tritici undergoes self-fusion between distinct cellular structures, and its mechanism is dependent on the initial cell density. Contrary to other fungi, cell fusion in Z. tritici only resulted in cytoplasmic mixing but not in multinucleated cell formation. The deletion of the So orthologous ZtSof1 disrupted cell-to-cell communication affecting both hyphal and germling fusion. We show that Z. tritici mutants for MAPK-encoding ZtSlt2 (orthologous to MAK-1) and ZtFus3 (orthologous to MAK-2) genes also failed to undergo anastomosis, demonstrating the functional conservation of this signaling mechanism across species. Additionally, the ΔZtSof1 mutant was severely impaired in melanization, suggesting that the So gene function is related to melanization. Finally, we demonstrated that anastomosis is dispensable for pathogenicity, but essential for the pycnidium development, and its absence abolishes the asexual reproduction of Z. tritici. CONCLUSIONS: We demonstrate the role for ZtSof1, ZtSlt2, and ZtFus3 in cell fusions of Z. tritici. Cell fusions are essential for different aspects of the Z. tritici biology, and the ZtSof1 gene is a potential target to control septoria tritici blotch (STB) disease.


Subject(s)
Ascomycota/physiology , Reproduction, Asexual/physiology , Ascomycota/growth & development , Plant Diseases/microbiology , Plant Leaves/microbiology , Triticum/microbiology
4.
Sci Rep ; 9(1): 9642, 2019 07 03.
Article in English | MEDLINE | ID: mdl-31270361

ABSTRACT

During their life cycles, pathogens have to adapt to many biotic and abiotic environmental stresses to maximize their overall fitness. Morphological transitions are one of the least understood of the many strategies employed by fungal plant pathogens to adapt to constantly changing environments, even though different morphotypes may play important biological roles. Here, we first show that blastospores (the "yeast-like" form of the pathogen typically known only under laboratory conditions) can form from germinated pycnidiospores (asexual spores) on the surface of wheat leaves, suggesting that this morphotype can play an important role in the natural history of Z. tritici. Next, we characterized the morphological responses of this fungus to a series of environmental stresses to understand the effects of changing environments on fungal morphology and adaptation. All tested stresses induced morphological changes, but different responses were found among four strains. We discovered that Z. tritici forms chlamydospores and demonstrated that these structures are better able to survive extreme cold, heat and drought than other cell types. Finally, a transcriptomic analysis showed that morphogenesis and the expression of virulence factors are co-regulated in this pathogen. Our findings illustrate how changing environmental conditions can affect cellular morphology and lead to the formation of new morphotypes, with each morphotype having a potential impact on both pathogen survival and disease epidemiology.


Subject(s)
Ascomycota/ultrastructure , Environment , Microscopy, Confocal/methods , Oxidative Stress , Plant Diseases/microbiology , Triticum/microbiology , Virulence Factors/metabolism , Ascomycota/growth & development , Gene Expression Profiling , Host-Pathogen Interactions
SELECTION OF CITATIONS
SEARCH DETAIL
...